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Foreword

This is the note on Real Analysis in the fall of 2024 at National Taiwan University with
Professor Tien. I tried to include all the proofs and details that has or has not been covered
in the class, in order to make this note as self-contained as possible. Some of the proofs might
be taken from somewhere and some might be wrong. The following topics are covered in the
lecture: measure theory, Lebesgue integration, Banach space, Hilbert space, approximation

theory, Fourier transform, spectral theory, and unbounded operators.
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1. Measure Theory and Integration

1.1. Lebesgue Measure

Definition 1.1
The length of an open interval (a,b) = I is b — a in the extended sense, denoted by £(I).

Remark
We define (a,a) = @.

Definition 1.2
The Lebesgue outer measure (or in brief, outer measure) of a set E C Ris

I,, are countable open intervals covering E } .

W'(E) = inf {Z (L)

Proposition 1.3

(a) Countable sets are of outer measure zero.

() If A C B, then u*(A) < u*(B).

(c) Forx e Rand A C R, u*(A +x) = u*(A).

(d) For countable A, C R, u*(U, Ay) < 2, 1" (Ay).

Proof. For (a), let x,, denumerate a countable set A. Then consider
I, = (x,—2"€,x, +27"€)

forn e N. Then A c U, I, and u*(A) < 3,2 -27"€ = 2¢. Since € is arbitrary, u*(A) = 0.

For (b), note that any cover of B must cover A. The result follows.

For (c), note that the translations of open intervals preserve their lengths.

For (d), let {17} cover A, for each n such that }; K(I;?) < u*(A,) + 27%. Then we have
that U, U; 17 covers U, A, and

Z Z e < Z 1 (Ay) +27€ = € + Z 1 (Ap).
n j n n

Since € is arbitrary, it follows that u* (U, A,) < 2, 1" (A,). [
Definition 1.4
A family of sets M is called a o-algebra if

(@ @ e M.

(b) A e M implies A° € M.

(¢c) For countably many A, € M we have | J,, A, € M.
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The space (X, M) is called a measurable space and the sets in M are called measurable

sets.

Proposition 1.5
M is a o-algebra if and only if the following hold:
(@ X e M.
() A,B e M implies A(\B,A|JB,A— B e M.
(¢c) For countably many A, € M we have (), A, € M.

Proof. Omitted. [

Proposition 1.6

Let F be a family of sets in X. Then there exists a unique smallest o-algebra containing ¥.

Proof. Let M be the intersection of all o-algebras containing ¥ . Since £ (X) must be such
a o-algebra, M is non-empty. Now we verify that M is a o--algebra. First, @ € M since @ is
in every o-algebra. Second, if A € ¥ then A must belong to every o-algebra containing
and so does A°. Hence A° € M. The closure under countable unions follows from a similar

argument. We conclude that M is the desired o -algebra. [ |

Definition 1.7
For a family of sets ¥, we denote the smallest o-algebra containing ¥ by o (F).

Definition 1.8
Let T be the family of all open sets. The Borel o-algebra is defined as B = (7). The sets

in B are called Borel sets.

Definition 1.9
A set E is called Lebesgue measurable if for € > 0, there exists an open set V such that
EcVand uy*(V-FE) <e.

Remark

The Lebesgue measurable sets form a o-algebra.

Remark

The Borel sets are Lebesgue measurable.

Remark
Not all subsets in R are Lebesgue measurable. Consider the Vitali set. For a Lebesgue mea-

surable set that is not Borel, consider the preimage of a Vitali set of Cantor-Lebesgue function.

Definition 1.10
A function f : (X, M) = (R, B) is called M-measurable if f~1(B) € M for all B € B.

Proposition 1.11
Let f: X — Y and A be an index set. Then



@ f71(B) = f1(B).
® [ (Usea Ba) = Ugea £ 71 (Ba).
© f7Naea Ba) = Naea S (Ba)
Proof. Omitted. m

Proposition 1.12
f: (X, M) > (R, B) is M-measurable if f~1((a, o)) € M.

Proof. Observe that {A C ]R| f 1A e T} is a o-algebra. By assumption, [a, b], (a, b],
[a,b) and (a, b) are in this o-algebra for a, b € R. [

Proposition 1.13

fn are measurable. Then sup,, f,, inf, f,, limsup f, and liminf f,, are measurable.

Proof. Note that {sup, f, > a} = U, {fx > a} and {inf, f, <a} = U, {f, < a} are measur-
able. lim sup,, f, = inf} sup,.; f» and liminf, f, = sup, inf,>; f, are measurable as well. =

Remark

lim, f, = limsup, f, = liminf, f, is measurable.
Definition 1.14
Let (X, M) be a measurable space. A measure on X is a function u : M — [0, oo] satisfying
(@) pu()=0.
® u(U, An) =2, u(A,) for disjoint A,,.
The triple (X, M, u) is called a measure space.
Proposition 1.15
Let (X, M, 1) be a measure space and A, B € M. Then
(@) A C Bimplies u(A) < u(B).
(6) u(A-B) =u(A)—u(B)if BC Aand u(B) < .

Proof. Omitted. [

Proposition 1.16

Let (X, M, 1) be a measure space and E, be a sequence of measurable sets. Then
() IfE, /' E, then u(E,) — u(E) as n — .
(®) If E, \, E and u(E1) < oo, then u(E,) — u(E) as n — oo.

Proof. Suppose u(E,) < o for all n. Consider S, = E, — E,—1 with Ey = @. Then §,, are
disjoint and | J,, S;, = E. Then

(E) = p(JSn) = D u(Sn) = Y w(En) = p(Enmy) = lim u(Ey).
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If u(E,) = oo for some n, then u(E) = co and the result follows.
For the second part, note that E1 — E,, / E1 — E. Then

M(E1) —u(E,) = u(E1 - Ep) = pu(E1 - E) = pu(E1) — u(E).

Rearranging gives the desired result. [

Theorem 1.17 (Egorov)
Let E be a measurable set with u(E) < o and f, : E — Rare measurable functions. If f,, — f
a.e. on E, then for all € > 0, there exists a closed set A¢ C E such that u(E — A.) < € and
fu — f uniformly on A.

Proof. Consider the case where f;, — f everywhere on E since {x € E | f,,(x) /& f(x)} is of
measure zero. For each n,k € N, let E] = {x €eE | |fj(x) - f(x)| < 1/nforall j > k}. Then
fix n and note that £} / E as k — oo. By proposition 1.16, there exists k, such that
u(E - E]’(‘n) < 27" Then we have |f,(x) - f(x)| < 1/n for every j > k, and x € Ep . Choose N
such that ),y 27" < €/2 and let A = ARSY, EZn. Then u(E — Ac) < DinsnN M(E — EZn) < €/2.
i) - @] < 6
whenever j > k,. Hence f, — f uniformly on A.. We may further find a closed A C A such
that u(Ac — Ac) < €/2. Then A, is the desired set. [

Also, for any § > 0, we may pick n > N with 1/n < ¢ and for x € A,

Definition 1.18
A sequence of measurable functions f, is said to converge almost uniformly to a function f
if for every € > 0, there exists a measurable set E. such that (E¢) < € and f, — f uniformly

on E..

Remark
The Egorov theorem states that if the space if of finite measure, then converging almost every-

where implies converging almost uniformly.

Definition 1.19

A function s : X — Y is called simple if it only takes finitely many values.

Lemma 1.20
f + E — [0,00] is measurable. Then there exists a sequence of simple functions s, / f;

furthermore, if f is bounded, then s, — f uniformly.

Proof. Consider s, = ’112:':)_1 k27" X p-1([k2-n (k+1)2-7)) F MX f-1([n,0])- Lhen s, are simple and

sy /" f.If f isbounded, then f~1([n, o]) = @ for some n large enough and s, — f uniformly.
[ |

Theorem 1.21 (Lusin)
Let E C R be a set of finite measure and f : E — R be a measurable, finite-valued function.
Then for all € > 0, there exists a closed set Fe C E such that u(E — Fe) < € and f|p_is

continuous.



Proof. First we may partition E into £ = |J;cn E; where E; = E(\[—i,i]. We first prove
the result for simple functions. Let f = Z;'V:I cjxa; be a simple function with the stated
properties. Then for each j, we may find a closed set F; C A; such that u(A; - F;) < €/N.
Now since E; are bounded, F; (] E; are compact and hence f being constant on each F; () E; is
continuous. Note that F, = Uf?’j:l F; () E; satisfies the desired properties. Next, for a general
measurable function f, we may find a sequence of simple functions s, /' f by lemma 1.20.
Now by Egorov’s theorem, we may find a closed set F. C E such that u(E — F¢) < € and

sp — f uniformly on F,. Since s, are continuous on F, f is continuous on F,. [ |

Remark

By Tietze’s extension theorem, f can be extended to a continuous function on all of R.

Proposition 1.22
E is Lebesgue measurable if and only if u(EAB) = 0 for some Borel set B.

Proof. Suppose E is Lebesgue measurable. Then for each n, there exists an open set V,, such
that £ c V,, and u(V,, — E) < 1/n. Let B = (), V,. Then B is a Borel set and u(EAB) = 0.
Conversely, if u(EAB) = 0 for some Borel set B, since B is measurable, there exists an open
V O B such that u(V — B) < €. Then B = (E () B) | J(B — E) and since the later set has outer
measure zero, E (| B is measurable. And since E — B is outer measure zero, E (B = E is

measurable. ]

Proposition 1.23
If f is Lebesgue measurable, then there exists a Borel measurable function g such that f = g

a.e.

Proof. Let sy " f be a sequence of simple functions with s; = Z?ﬁl cixe, where E; are
measurable. Then for each E; we may find a Borel set B; C E; such that u(E; — B;) = 0 by the
previous proposition. Then ¢, = Z?:k1 cixB, 1s a Borel measurable function. Let g = lim_,o #.

Then g is Borel measurable and f = g a.e. since u(E; — B;) = 0 for countably many i. [

1.2. Lebesgue Integration

Definition 1.24
For a simple function s = 3" | cixE,, its Lebesgue integral is defined as

n

/ sdu = Z cipt(E;).

i=1

Definition 1.25

For a non-negative measurable function f, its Lebesgue integral is defined as

/fdu:sup{/sd,u

sis simpleand 0 < s Sf}.
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Definition 1.26

For a measurable function f : X — [—o0, 0], its Lebesgue integral is defined as

[rau= [ srau- [ ran

where f* =max{f,0} and f~ = max {-f, 0} provided that

[istan= [ rraus [ <o

In such a case, we say that f is integrable.

Proposition 1.27
For f, g integrable and c € R,

(@) /cf+gd/1=c/fd,u+fgd,u.
®) If f < g a.e., then /fd,u < fgd,u.

Proof. Omitted. u

Theorem 1.28 (Lebesgue Monotone Convergence Theorem)
Let f,, : X — [0, co0] be a sequence of measurable functions with f, / f a.e. Then

/fdu=nlg§o/fndu-

Proof. By the monotonicity we have

[ s [ san
lim / Jndu < / fdu.
n—oo
To obtain the reverse inequality, note that for any ¢ € (0, 1), there exists N such that f,, > c¢f

a.e. for all n > N. Then
[ iz [ ra

lim [ f,du > c/ fdu.
n—oo0

for all » and hence

for alln > N. Letting n — oo,

Taking ¢ — 1~ then

lim f,,d,uZ/fd,u = lim/fndu:/fdu.
n—oo n—oo



Remark

Asa consequence,
/ D fudn =) / Fudu.

Theorem 1.29 (Bounded Covergence Theorem)
Suppose u(X) < oo. Let f,, : X — R, be a sequence measurable functions such that f, < M
a.e. for some M € R If f,, — f a.e., then f is integrable and

[ rau=tim [ fu

Proof. For any € > 0, by Egorov’s theorem, there exists F' C X such that u(X — F) < € and
fu» — f uniformly on F. Then there exists N such that |f,, — f| < e on F for all n > N. We

have
‘ [ = [ sa

S/XIfn—fld#

= w— fld w— fld
[ih=fldus [ 1f= sl
< eu(F) + 2Mu(X - F) = e(u(F) + 2Me).

Since u(X) < oo and € is arbitrary, we may conclude that
/ fdu = lim / fndu.

Lemma 1.30 (Fatou)
fn : X — [0, 0] are measurable. Then

/ liminf f,du < lim inf / Jndu.
n n
Proof. Let g, = infys, fi. Then g, / g = liminf, f,. By LMCT,

/gnd#ﬁ/gduzfliminffndy.

Note that f,, > g, and thus f fadu > f gndu. Hence
lim inf/ fadu > lim inf/ gndu = / gdu = / liminf f,du.

Theorem 1.31 (Lebesgue Dominated Convergence Theorem)

Let f,, : X — [—o0, 00] be a sequence of measurable functions such that f, — f a.e. and there

9



exists an integrable function g such that |f,| < g a.e. for all n. Then

[ sau=tim [ pa

Proof. Since |f,| < ga.e.,|f| < ga.e. Now |f, — f| < |ful+|f]| < 2g a.e. Let h, = 2¢g—|f, — f| =
0 a.e. By Fatou’s lemma,

/ 2gdu = / liminf A,du < liminf/ hpdu = liminf/ 2g — |fu— fldu
=/2gd#—limsup/ | fo = fldp.
n

It follows that
Osliminf/ | — fldu slimsup/ |fu — fldu <0.
n n
Hence

lim/Ifn—fld#=0-
n—oo

By the triangle inequality,

'/fdﬂ—/fnd,u S/If—fn|du—>0.
So
/fd#=,}gngo/fndﬂ-
]
Remark

If supp(f) has finite measure and f is bounded, then

/fzinf/sd/l,
s>f

where s is simple.

Definition 1.32
LY ={f: X > R| f is integrable} with the norm 1fll 2 = f | f| du is called the L' space.

Remark

The elements in L' are in fact equivalence classes of functions that are equal a.e.

Proposition 1.33
Let f € L be a nonegative function. Then for every € > 0, there is some § > 0 such that for
any measurable E with u(E) < 6,

Lfd,uﬁe.

10



Proof. Let E, = {x € X | f(x) >n}. Then by Lebesgue dominated convergence theorem,

since fxr, < f,
/ fdu — 0.
Ey,

For any € > 0, there exists n such that

/Enfd,uﬁ

Pick § < €/(2n). Then for any measurable E with u(E) <6,

DN m

+

N m
DN m

/fdu= Fdu + fdﬂS/ Fdu +nu(E) <
E ENE, EﬁEﬁ E,

since f < non E{. This completes the proof. [

Theorem 1.34 (Lebesgue-Vitali)
f : X — R is Riemann integrable if and only if the discontinuity set of f has Lebesgue
measure zero. Furthermore, if f is Riemann integrable, then the Riemann integral and the

Lebesgue integral agrees.

Proof. Define the oscillation of f at x as

osc(f, x) = Uliler diam(f(U)),

where U is open.

We first claim that f is continuous at x if and only if osc(f, x) = 0. Indeed, if f is
continuous at x, then Ve > 0, 36 > 0 such that |f(x) — f(y)| < € for all y € Bs(x). Then
diam(f(Bs(x))) < 2¢. Since € is arbitrary, osc(f, x) = 0. Conversely, if osc(f, x) = 0, then
Ve > 0, 3 open U containing x such that diam( f(U)) < €. This implies that | f(x) — f(y)| <€
for all y € U and hence f is continuous at x.

Next, let D collect all points x such that osc(f, x) > € > 0. We claim that D, is closed.
For any convergent sequence x; € D, let x; — x. For any open U containing x, 3 N such
that x; € U for all k > N. Then 3 an open neighborhood of xy, U’, such that U’ ¢ U and
diam(f(U’)) > €. Hence osc(f, x) > € and x € D, showing that D, is closed. Observe that
D =, Dijn.

Now suppose that f is Riemann integrable. Then for any € > 0, 3 such that U(f,P) —
L(f.P) < and |P| < i. Then

> (sup £ - inf f) 101+ > (sup  ~inf ) 10|

QeP, QeP,
QQD%QE@ QﬂD%ZQ
= > (sup f —inf f) |0 = U(f,P) - L(f,P) <.
QeP e Q

11



Note that supy f —infg f = diam(f(Q)). This gives that 2Mu*(D 1) < € for every n. Since €
is arbitrary, we conclude that u*(D 1) = 0 for each n. Thus D is ann union of sets of measure
zero and hence also has measure ze’;"o.

For the converse, suppose that m(D) = 0. Then D, also has measure zero. Let  be a
partition on E with ||P]| < 6 for some § > 0, which will be determined later. Then

tKﬁ?»—l&ﬁP)=}j@gpf—ggfng|

QeP
= >, (supf-inff)|Q|+ > (supf—inff)[Ql
gep, ¢ Q gep, ¢ Q
ONDe=2 ONDc+2

For the first term, sup, f —infg f < € for [|P|| < 61 for some §; > 0. And thus the first term
is bounded by em(E). For the second term, sup,, f —infy f < 2M and since D has measure
zero, 30y cubic cover of D, such that ), |Qr| < €. Now if diam(Q) < 89 for some 62 > 0, then
those Q intersecting D nonempty are subset of [ J;, Q. Thus the second term is bounded by
2Me. Choosing 6 = min {01, 62} yields that

U(f,P)-L(f,P) <em(E) +2Me

whenever ||P]| < 6. Since € is arbitrary, f is Riemann integrable. [

Proposition 1.35

(a) Step functions are dense in L.

(b) Continuous functions with compact support are dense in L.

Proof. Let f € £'. By lemma 1.20, we already know that simple functions are dense in
L. It now remains to show that step functions can approximate simple functions. Since
simple functions are linear combinations of finitely many characteristic functions, it suffices
to show that characteristic functions can be approximated by step functions. Now for any
measurable E, there is a family of almost disjoint cubes Q; such that u(Ea Uf‘;[ 1 9i) < 2,
and thus we may set the step function to be ¢ = 2%1 Xo0:> With || xz — ¢|l z1 < 2e.

For the second part, let it now suffices to show that continuous functions with compact

support can approximate characteristic functions of a rectangle, say [a, b]. Then set

0 x <a-—ce,

X—a+e

c a—e€<x<a,

gx) =141 a<x<b,
1-2b p<x<b+e,
0 x>b+e.
Then g is continuous with compact support and ||)([a7b] — g||L1 <e€/2+€/2=c¢€. [

12



1.3. Differentiation

Definition 1.36
Let f € L1(RY). The Hardy-Littlewood maximal function is defined as

“(x) = sup —
7@ = swp = [ 1ol

B:xeB

where the supremum is taken over all balls containing x.

Proposition 1.37

f* is measurable.

Proof. Let E, = {x| f*(x) > a}. We claim that it is an open set. Indeed, if p € E,, there

exists a ball B containing p such that

1

= /B FO)dy > a.

Now any x close enough to p will be contained in B and hence in E,,. Thus E, is open. Hence

f* is measurable. L

Lemma 1.38
[Vitali Covering Lemma] Suppose {B1, . .., By} is a finite collection of open balls in RY. Then

there exists a disjoint subcollection {Bl-l, e, Bl-k} such that

N k
u UBj SSdZ,u(B,-j).
j=1 j=1

Proof. First we make an observation that if B and B’ are balls intersecting with, say, the
radius of B is greater than the radius of B, then B’ is contained in the ball B that is concentric
with B but with 3 times the radius.

The construction of the subcollection is proceeded as follows. First, pick a ball B;, with
the largest radius. Then remove all balls intersecting with l§,~1, the ball concentric with B;,
but with 3 times the radius. Among the remaining balls, we repeat the process and pick
B;,. The process terminates when no more balls can be picked, after at most N steps and we
obtain a disjoint subcollection of balls {B;,, ..., B, }.

Lastly, we verify the inequality. By the construction, we know that U?’ZIB ;i C Uleéij and
thus

Theorem 1.39 (Weak-Type Inequality)

13



Let f € LY (RY). Then for all a > 0,
. A
u(fre R £@>a}) < = Ifllpme

where A = 34.

Proof. Let E, = {x | f*(x) > a}. For each x € E, there exists a ball B, containing x such that

/ FOldy>a = pB) <~ / £l dy.

u(Bx)

Now for any fixed compact K C E,, K is covered by | J,cr, Bx, and hence there exists a finite
subcover {B1,..., By} of K. By the Vitali covering lemma, there exists a disjoint subcollec-
tion {Bil, ey Bik} with

e

As a result,
N k 3d k
. d . —
w) < |y | <3 Y utsi) <Y [ Iroilay
]:1 ]:]_ ]:1 'y
34 34
<= [ vonasZ [ o,
@ Juk_ B, a JRrd
Since the inequality holds for all compact subset K of E,, the proof is complete. [
Remark

Note that {x | f*(x) = oo} C {x | f*(x) > a} for every a > 0. Taking a — ~ yields

p{x | f7(x) =c0}) =0
Hence f*(x) < o a.e.

Theorem 1.40 (Lebesgue Differentiation Theorem)
Let f € LY (RY). Then for almost every x € RY,

/ FO)dy = f(0).

lim
m(B)—0,x€B m(B)

Proof. Since continuous functions are dense in £!, we may find a continuous g such that

lf —gll,1 < €. For such g, by the continuity, there exists a ball such that [g(y) — g(x)| < €

14



for all x,y € B. Thus

i o= sl =t [0 -sonars s [ o) et s g0 - 00

1
m(B)
<o L1050l + i [ 1) gl lsto - r(o)
<(f-g)'x)+e+]gx)—f(x)].

Since € can be arbitrary small, we have

’ﬁ‘/]gf@)dy—f(ﬂ <(f-9)x) +|gx) - f(x)].
Now we let
Eq=1x| lims L/f()d—f()>z
a =X m(B)_)OIiC};B m(B) 5 y)ay X .

We claim that E, has measure zero. Set

Fo={x|(f-8)"(x)>a} and Go={x|lg(x) - f(x)]>a}.

Then we have E, C F, U G,. By the weak-type inequality and Tchebyshev’s inequality,

A A 1 1
u(F) < —=|lf —gllpp < —€ and u(Gy) < —|If —gllp < —e.
a a a a

Thus u(E,) < u(F, U G,) < e, Since € is arbitrary, we have u(E,) = 0 and the proof is
complete. [

Remark
For f € L1(R), and F(x) = f_xoo f(y)dy, we have F’'(x) = f(x) a.e. Indeed,

x+h

Fla+h) - F&) FO) = Fx)dy

h

x+h
<3 [ re-rola

—f(x)‘zz

1 x+h 1 x+h
SE/H If(y)—f(X)Idy<2ﬁ |f(y) = f(x)ldy —0

as h — 0Oa.e. x.

Remark

In fact, the requirement that f € L1 can be relaxed to f € Lloc, which is defined as the set of
all locally integrable functions, i.e., f xp € L for all finite balls B since the proof only requires
B to be a ball near x.
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1.4. Radon-Nikodym Theorem

Definition 1.41
Let (X, A) be a measurable space. A signed measure is a function u : A — [—co, 00| such

that u(2) = 0 and for any countable disjoint collection {A;};cn,

A =) u(an.

ieN ieN

u

Remark

The range of u can only include one of +co.

Definition 1.42
Let (X, A, u) be a measure space. u is called o-finite if X can be covered by countably many
A, € A such that u(A,) < o for all n. In this case, we also call X o-finite.

Definition 1.43

Let v, A be two measures defined on a measurable space. v is said to be absolutely contin-
uous with respect to 1 if A(A) = 0 implies that v(A) = 0 for all measurable A, denoted as
v < A

Example
Let

v(A) = /fdﬂ
A
where f > 01is measurable. Then A(A) = 0 implies v(A) =0. v < A

Definition 1.44
Let v, A be two measures defined on a measurable space. v is said to be singular with respect
to A if there exists a measurable set A such that A(A) = 0 and v(A€) = 0, denoted as v L A.

Example
Let A be the Lebesgue measure on [0, 1] and

1

V(A) = Z ¢ibg,(A),  with Z i <o, 64(A)=1{g €A},

where q; enumerates the rationals in [0, 1] and 1 is the indicator function. Then v 1L A.

Definition 1.45

v and A are said to be equivalent if v < A and 1 < v.

Definition 1.46
Let (X, A, u) be a measure space. A set P € A is said to be positive if u(A) > 0 for all
measurable A C P; a set N € A is said to be negative if u(A) < 0 for all measurable A C N.
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Theorem 1.47 (Hahn Decomposition)
Let u be a signed measure on a measurable space (X, A). Then X can be partitioned into a
positive set P and a negative set N. Furthermore, if P’, N’ form another such partition, then

PAP and NAN' are measure zero.

Proof. We may consider the case where u(A) # —co for all A € A. The other case is similar.
We first claim that every measurable set A contains a postive set P such that u(P) > u(A).

To prove the claim, we first show that for every ¢ > 0, there exists Ac C A such that
u(Ae) > u(A) and B c A implies u(B) > —e. Otherwise, we can pick a sequence of set
By inductively, such that By Cc A, ..., By C A— (B1U---U By_1), ...with u(B;) < —e. Put
B = Uy By. Since By are disjoint, u(B) = —oco. Also, u(A—B) = u(A)—u(B) = oo, contradicting
to the remark that u cannot take both +co. Now choose €, — 0 and let P = N,A,,. A, \, P
and then u(Ac,) — u(P) by proposition 1.16. Thus u(P) > u(A).

Next, let s = sup {u(A) | A € A}. There is a sequence P, such that u(P,) — s. Note that
s > 0 since @ € A. By the claim, we may assume that P, are positive. Putting P = U, P,,, we
have u(P) = s and P is positive. Now let N = X — P. N is negative; otherwise if E C N and
U(E) >0, then u(PUE) = u(P)+ u(E) > s, which contradicts to the definition of s.

Finally, suppose P’ and N’ are another such partition. Then P N N’ and N N P’ are both
negative and positive, implying that they are measure zero. u(PAP’) = u(PNN")+u(NNP’) =
0. This furnishes the proof. [

Corollary 1.48 (Hahn-Jordan Decomposition)
If v is a signed measure on a measurable space (X, A), then there exists a unique pair of

positive measures vt and v~ such that v = v —v~.

Proof. By the Hahn decomposition, X can be partitioned into a positive set P and a negative
set N. Define v*(A) = v(ANP)and v~ (A) = —v(ANN). Then v* and v~ are positive measures

and v = v* —y~. The uniqueness follows from the uniqueness of the Hahn decomposition. =

Theorem 1.49 (Radon-Nikodym)
Let (X, A) be a measurable space and v, A are o-finite measures on (X, A). If v < A, then

there exists an A-measurable function f : X — [0, o) such that for every A € A,

V(A):Lfdﬂ.

Furthermore, if f and f’ are two such functions, then f = [’ a.e.

Proof. We first consider the case where v and A are finite. Let

Fz{f:X—)[O,oo]

/fd/lSv(A) for all A eﬂ}.
A
F # @ since f =0isin F. Now let f1, fo € F and A € A and define

Ar={xe Al filx) > fa(x)}, As={x€eA| filx) < fa(x)}.
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Then
/max {fl,fg} dl = / fidd + / fodd < V(Al) + V(Ag) =v(A).
A Ay Ag

Thus max { f1, fo} € F. Next, for any sequence of functions f,, € F such that

lim | f,dd=sup / fdA,
X X

n—oo feF

we may assume that f;, " by replacing f,, with the maximum among fi, ..., f,. Let g be the

pointwise limit of f,,. By Lebesgue’s monotone convergence theorem,

/gd/l = lim /fnd/l <v(A),
A =0 JA

so g € F. Also, by construction,
/gdﬂ = sup/ fdaA.
X feF Jx

vo(A) = v(A) — /Agd/l.

Now define

Since g € F, vy 1s a nonnegative measure. To prove the equality, we need to show that
vo(A) = 0 for all A € A. Suppose vg > 0. Then there exists € > 0 such that vy(X) > eA(X).
By the Hahn decomposition theorem, we can find a positive set P such that vo(A) > €A(A)
for each A c P. Thus

v(A):/Agd/l+vo(A)2[4gdﬁ+v0(PﬂA)2‘/Agd/l+e/l(PﬂA):/A(g+e)(p)d/1.

Note that A(P) > 0, for otherwise A(P) = 0 and vo(P) < v(P) =0 = v(P) = 0 by the

absolute continuity and hence
vo(X) — eA(X) = (vo — €)(N) <0,
posing a contradiction. Meanwhile,
[eremits v <o = grewer.

and

/(g+e/\/p)d/l>/gd/l:sup/fd/l.
X X feF Jx

This violates the definition of the supremum. Thus vy = 0 and we obtain that

v(A) Z/Agd/l.
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Finally, if we define

Fl = g(x) ffg(x)<oo,
0 if g(x) = oo,

since g is A-integrable, f = g A-a.e. and f is the desired function.

For the uniqueness, suppose f and f’ are two such functions. Then

v(A):/Afd/l:/Af’d/l — /A(f—f')cmzo

for every A. In particular, letting A = {x e X | f(x) < f/(x)}or A = {x e X | f(x) > f'(x)}

gives
[-rra=[-rra=o
X X

Thus f = f’ 1-a.e.
For the general case where v and 1 are o -finite, we can write X = U, X,, such that A(X,,) <

oo and X, are disjoint. For each n we can find f, such that

V(A):/Afnd/l.

for every A-measurable A C X,,. Let f =}, fuxx,-

/AfdA:Zn]

for every A € A. The uniqueness follows from the uniqueness of f;. [

fadd = ) V(AN X,) = v(A).

ANX, -

Remark
The function f can be chosen in LY(X, 1) if v is finite.

Definition 1.50
The function f in the Radon-Nikodym theorem is called the Radon-Nikodym derivative of
v with respect to A, denoted as f = %.

Proposition 1.51
Let v, u and A be o-finite measures defined on measurable space (X, A). If v < land u < A,
then

(@) d(‘;") =Dy ‘;—f{ A-a.e.
) If v < u < A, then % = j—/‘;fl—ﬁ A-a.e.

-1
(c) If v and u are equivalent, then j—; = (%) H-a.e.

dv
dv = —dA.
Jostr= e
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Proof. For (a), note that v + u < 4 as well. Let f = 9f and g = d“ . Then

d(v+ )

1 dAd forall A € A.

/A(f+g)d/l=/Afd/l+/Agd/l:v(A)+u(A):(V+M)(A):/A

Thus dv+dﬂ f+g d(y+“)/lae
Next, we jump to (d). We start by considering the case where g = y4 with A € A. By the
Radon-Nikodym theorem,

dv dv
/gdv-/ xadv =v(A) = /—d/l / d/ld/l / d/ld/l

By linearity, the result holds for simple functions. For a nonnegative g € £!(v), we can find
a sequence of simple functions g, " g so that

d dv
/gdv = r}l_{rolo gndv = ,}1_)m /gnd—;d/l / d/ld/l

by Lebesgue’s monotone convergence theorem. For general ¢ € L(v), we can write g =

¢* — g~ and apply the result to g* and g~.

dv dv
gdv=/g+dv—/g_dv=/g —dA - /g_—dﬁzfgdv.
/x X X x  da x  da X

With (d) established, we can now prove (b). By the Radon-Nikodym theorem,

dvd,u
Y dv = v(A .
 didl” / "= /V v(4) = /

Finally, for (c), letting 2 = v and applying (b) gives 1 = % = ZZ j’; v-a.e. and thus u-a.e.
-1
by the equivalence of v and u. Hence Z; = (%) u-a.e. [

Theorem 1.52 (Lebesgue Decomposition)
Let v, A be two o-finite measures defined on a measurable space (X, A). Then v can be de-

composed uniquely into v = v, + vy where v, < dand vy L A.

Proof. We first assume that v, A are finite measures. Let y = v + 1. Then clearly 4 < u and
u is o-finite. By the Radon-Nikodym theorem, there exists a Radon-Nikodym derivative f
such that

/l(A)=/Afd/1.

Denote {x € X | f(x) = 0} by E. Define
vo(A) =v(ANES, vi(A)=v(ANE)

for each A € A. Then clearly v,(A) + vi{(A) = v(ANE) +v(ANE) =v(A) for all A € A.
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Also, suppose A1(A) = 0. Then by proposition 1.51,

O:/l(A):/Afdp:/Afd/l+/Afdv:/Afdv.

Hence f(x) = 0 v-a.e. on A. This implies that v(A) = v(ANE) and thus v,(A) = v(ANE°) =
v(A) —=v(ANE)=0,s0v, < A. Also, since A(E) = 0 and v,(E¢) = v(@) =0, vy L A. For
the uniqueness, suppose v = v, + vy = v, + v, both satisfy the conditions. Since v, < 1 and
v/, < A, by the uniqueness of the Radon-Nikodym derivative, v, = v, and hence v, = v} as
well.

Finally, for the general case where v, A are o-finite, write X = U,X,, where A(X,,) < o
and X, are disjoint. For each n we can find the corresponding decomposition v, and v{. Let
Va = 2,veand vy = 3, vi. Then v, < 1 and vy L A. The uniqueness follows from the

uniqueness of the decompositions in each X,,. This establishes the proof. [

Corollary 1.53
Let v be a signed measure and A be a measure defined on a measurable space (X, A). Suppose
both v and A are finite and v < A. Then there exists a unique f € LY(X, ) such that

v(A):Afdﬂ.

Proof. By Hahn decomposition, there exists a positive set P and a negative set N such that
P UN = X. Define
vp(A) =v(ANP), vy(A)=-v(ANN).

Then clearly vp — vy = v and |v| = vp + vy. Note that vp and vy are both positive measures.
Also, by assumption, if 1(A) = 0 then v(A) = 0 and hence so are vp and vy. Thus vp < 2
and vy < A. By the Radon-Nikodym theorem, there exists fp, fv € £1(X, 1) such that

vp(A) =/Ade/L vn(A) =/Ade/1-
Hence
V(A) = vp(A) = vy (A) = /A fpdd - /A fdi = /A (o — fv)dA.

By setting f = fp — fy, we obtain the desired function. Uniqueness follows from the unique-
ness of the Radon-Nikodym derivative. [

1.5. Product Measure

Definition 1.54

Let S, T be two o-algebra on X and Y respectively. The smallest o-algebra on XXY containting
the collection {S X T | S € S,T € T } is called the product o-algebra of S and 7, denoted by
S®T.
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Definition 1.55
Suppose X is an arbitrary set and M is a collection of subsets of X. We say that M is a

monotone class if
(a) If E; C E;y1 for countably many E; € M, then |2 E; € M.
(b) If E; O Ej41 for countably many E; € M, then (2, E; € M.

Definition 1.56

A collection A of subsets in X is called an algebra on X if
(@) @ €A
(b) If A € A, then A€ € A.
(¢c) If A1, A9 € A, then A1 U Ag € A.

Remark
The condition (c) implies that for finitly many A; € A, U A; € A.

Theorem 1.57 (Monotone Class Theorem)
Suppose A is an algebra on X. Then the smallest o-algebra containing A is the smallest

monotone class containing A.

Proof. Let M be the smallest monotone class containing A. The theorem can be written as
o(A) = M. First we show that M C o (A). To see this, we claim first that a o-algebra is
automatically a monotone class. Indeed, let S be a o-algebra. Then for any countably many
E; € Swith E; /" E, we have E = |2, E; € S. Also, for any countably many E; € S with
E; \, E, we have E{ / E°. Thus E° € S and E € S. Therefore S is a monotone class. It
follows that o-(A) is a monotone class and hence M C o (A) by the minimality of M.

Next, we claim that M is a o-algebra. By definition, we already have @ € M. Let
E € M. Then there is a sequence of sets E; € A such that either E; / E or E; \, E. In the
former case, we have E¢ = (2; E{ € M; in the latter case, we have E¢ = (J2; E{f € M.
Thus E¢ € M. Lastly, we need to show that M is closed under countable unions. We
start by showing that it is closed under finite unions. Consider A € A. Define D; =
{D e M|DUA e M}. It is clear that D; is a monotone class and A c D;. Consider also
Do ={D e M| DUE € Mfor all E € M}. Then D5 is also a monotone class and A C Ds.
By the minimality of M, we have M c D1 N Dy and hence M is closed under finite unions.
Now let E; € M be countably many sets. Put F;,, = U, E;. Then F,, /" E = {J; E;. By the
closure of M under countable unions, F,, € M; by the definition of M, E € M. We conclude
that M is closed under countable unions. Thus M forms a o-algebra. It now follows by the
minimality of o-((A) that o-(A) c M. We conclude that o-(A) = M. [ |

Lemma 1.58
Suppose (X, S, u) and (Y, 7T, v) are two finite measure spaces. Let

F = {E cXxY ‘ / / e (e, ) dv()du(x) = / / XE<x,y>du<x>dv(y>}.
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Then ST C F.

Proof. Since @ € ¥, F is non-empty. Let E = A X B for some A € S and B € 7. Then

[ [ xenavoduco - /A /B dv(3)du(x) = v(B) /A du(x)

= V(B)u(A) = /B H(A)dv()

_ /B /A () dv(y) = / / X (e )0 dv ().

Now let R be the collection of all rectangles on X XY, 1.e., R={AXB|A€S,BeT}.
For Ri,R2 € R, R1 N Ry = @ implies yr,ur, = YR, + Xr,- By the above calculation, we know
that R c . Consider a sequence of sets E; € F. If E; /" E, then

[ [ xeemavoiaue = tim [ [ eonavduco
~tim [ [ e duavo) = [ [ e,

Also, if E; \ E, then

[ [ xetenaroidueo =tim [ [ e eoavoduco
“tim [ [ eauaro) = [ [ xeedueao.

Hence ¥ is a monotone class containing R. By the monotone class theorem, S® 7 Cc ¥. =

Theorem 1.59 (Existence and Uniqueness of Product Measure)
Let (X,S,u) and (Y, 7T ,v) be two o-finite measure spaces. Let w be a set function on S ® 7.
For A € Sand B € T, define

w(A X B) = u(A)v(B).

Then, w extends uniquely to a measure on (X XY,S ® T") such that for every E € S ® T,

W(E) = (1 x v)(E) = / / e (x ) dv(y)du(x) = / / e (6 y)du(x)dv(y).

Proof. If we consider u and v to be o-finite measures, lemma 1.58 gives us that w(A X B) =

u(A)v(B). We want to extend w to a set function

W(E) = / / e () dv () du(x) = / / e () du () dv ().

Since integrals are linear, w is finitely additive. Applying the monotone class theorem, w
becomes o-additive. Hence w becomes a measure on (X XY, S ® 7). To see the uniqueness,
let p be another measure on (X X Y,S ® 7) such that p(A X B) = u(A)v(B). Let M =
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{Ec XXY |w(E) =p(E)}. For countably many E; € M with E; / E, we can write E =
U2 D; where D; = E;y1 — E; and Ey = @ are disjoint. The o-additivity gives w(E) = p(E).
Thus E € M. A similar argument gives us that E; \, E implies £ € M. Hence M is a
monotone class. By the monotone class theorem, S ® 7 ¢ M. Thus w = p.

For the case u, v being o-finite, consider {A;} and {B;} to be two disjoint partitions of X
and Y respectively with 1(A;) < co and v(B;) < oo for all i. Let E;; = E N (A; X Bj). By the

established result for finite measures,

//XEijdﬂdV://XEijdVdﬂ'

Taking the sum over i, j and applying Lebesgue monotone convergence theorem gives us

w(E)Z//XEdVd#://XEdeV

for any £ € S ® 7. Applying Lebesgue monotone convergence theorem again results in that
w is o-additive. Hence w is a measure on (X X Y,S8 ® 7). To see the uniqueness, let p be
another measure on (X XY,S ® 7) such that p(A X B) = u(A)v(B). By the o-additivity and
the uniqueness of the finite measure case,

W(E) = Y w(Ey) = Y p(Ey) = p(E)
i.J i.j
forall E€e S® 7. Thus w = p. [

Theorem 1.60 (Fubini-Tonelli)
Let (X,S,u) and (Y, T ,v) be two o-finite measure spaces. Let F : X XY — Rbea SQ T -

measurable function such that one of the following conditions holds:
(@) F>0a.e. (Tonelli);
(b) F isintegrable (Fubini).

Then
/F(x,y)d(,uxv)://Fd,udv://ded,u

y = /F(x,y)du(x) is T -measurable,

and furthermore,

X f F(x,y)dv(y) is S-measurable.

Proof. By theorem 1.59, the statement holds for indicator functions and hence for simple
functions. By Lebesgue monotone convergence theorem, the non-negative case (Tonelli)
is proved. For the integrable case (Fubini), write F = F* — F~. We also have that y —
/ F*(x,y)du(x) and x / F*(x,y)dv(y) are S-measurable and 7 -measurable by the theo-
rem 1.59. Furthermore, y — f F*(x,y)du(x) and x — / F*(x,y)dv(y) are integrable a.e. or
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the condition (b) is violated. Thus

/Fd(,uxv)://F+d(u><v)—//F_d(u><v)
//F+dudv—//F dudy
://F+dvdy—//F dvdu.

The proof is complete. [

Remark
By induction, one can extend the Lebesgue measure to any R%, d € N. B,, ® B, = Bypin, Where

B, is the Borel o-algebra on R". Extension to R* is also possible.

1.6. Convergence in Measure

Definition 1.61
Let (Q, S, u) be a measure space. We say that a seuqnce of function f, on Q converges to a

function f in measure if for every € > 0,

p({x € Q[ [fa(x) — f(x)| 2 €}) =0
as n — oo, We write f, A f.

Theorem 1.62 (Markov Inequality)

Let (Q, S, u) be a measure space. For any non-negative measurable function f on Q,

u({xemfzr})s}/gfdu.

Proof. Let E, = {x € Q| f(x) > t}. Then

N(EI)Z/XE,dﬂS/];dﬂ:%/fdﬂ~

Corollary 1.63 (Chebyshev Inequality)

Let (Q, S, u) be a measure space. For any measurable function f on Q, and a € R,
1 2
pu{xeQl|f(x) —al 21}) < = Q(f—a) du.
Proof. Let g = |f — a|?. Apply Markov inequality,
1 1 9
pleeQllf@ -alzm =p({re@|g= ) < 5 [ gdu=5 | (/- du
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Corollary 1.64 (Chernoff Bound)
Let (Q, S, u) be a measure space. For any measurable function f on Q, andn € R,

W(x Q| f(x) 2 1)) < e / M du
Q

forallt € R

Proof. Let g = ¢"/. Then by Markov inequality,

1
u({erlf(x)Zt}):u({x€Q|gZe"t})sﬁfggdy:e_”"/genfdp.

[ ]
Corollary 1.65
If f, > fin L, then f, > f.
Proof. Let € > 0. By Markov inequaltiy, we have
1
pix € Q1 falx) = f(O)] 2 €}) < = QIfn—fla’,u—>0
asn—>00.Thusf,,ﬂ>f. [

Remark

The converse is not true. Simply find a sequence of functions converging in L' but not almost
everywhere will do. However, even stronger, we can actually find a sequence converging in
measure but neither in L' nor almost everywhere. For example, let Q = [0, 1] with usual
measure. Then let fi ; = kQX[%',%] for j =0,1,...,k — 1and k € N. Reindex the sequence
recursively by letting go = f1,0 and

feje1 & = frj with j # k-1,
8n+l = . ' )
fier.0 U gn = frjwith j =k - 1.

This also defines a injective function ¢ : n — (ky, j,). Then g, — 0 in measure because for
any € > 0,

1
u{x | lgal = €}) = — — 0.

But )
[ 1=, = o
0

and since [i—", L ',’: | includes x infinitely many times for any x € [0, 1], g, converges nowhere
n n

in [0, 1].
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Theorem 1.66
Let (Q, S, u) be a o-finite measure space. If f, 5 f, then there exists a subsequence f,, such

that f,, — f almost everywhere.
Proof. Since f; 5 f, we can choose n; such that

1

ok for all n > ny.

ﬂ({x e 9‘ ) - f@)] 2 %}) <

Let E; = {x € Q | | fu(x) — f(x)]| = %for alln > nk}. Then u(Ey) < 27%. Put H, = US>, Ex.
We have
p(Hy) < > p(Eg) < ) 27k =27+,

k>m k>m

Put H=\_y Hu, H, \, H. Then
p(H) = lim p(Hp) = 0.
If x ¢ H, then x ¢ H,, for some m. Then
1
|fnk(x) - f(x)| < T for all k > m.

Thus f,, (x) — f(x) almost everywhere as k — co. [

Definition 1.67
Let f,, be a sequence of measurable functions on (Q, S, u). We say that f, is Cauchy in mea-

sure if for every € > 0,
u{x € Q| |fu(x) = fu(x)| 2 €}) - 0

as n,m — oo,

Theorem 1.68 (Cauchy Criterion for Convergence in Measure)
Let (Q,S, 1) be a measure space. A sequence of measurable functions f, on Q converges in

measure if and only if it is Cauchy in measure.

Proof. Suppose that f, — f. Let € > 0 be given. We have
p{lfa—flz€}) =0
as n — oo. Then since {|f, — fil 2 €} C {Ifu — fI 2 €/2} U{|fin — f| = €/2},
w{|fn = fml 2 €}) < p({1fu - f1 2 €/2}) + u({lfm - f1 2 €/2}) =0

as n,m — oo, Thus f; is Cauchy in measure.
Conversely, suppose that f, is Cauchy in measure. We can take a subsequence f,, such
that

wCE) = u({lf; = fuyul 2 27}) <277,
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Put Fy = U, E;. Then u(Fy) < X7, u(Ej) < 271 Forx ¢ Fy,i> j,

i-1 i-1
|fni _fnjl < Z |fn[+1 _fn1| < Zz_l < 2_].+1.
I=j I=j

Hence f,; is Cauchy on F}. By the completeness of R, f,;; converges pointwise on F; for each
k. Put F = N;°_; Fi. Then u(F) = 0. Let

lim; e fnj (x) ifx¢F,
ifxefF.

fx) =

Since f,, are measurable, f is measurable. Also, f,; — f pointwisely almost everywhere.
Thus fy, 5 f. Observe that {|f, — f| > €} C {|fn - fnj| > 6/2} U {|f,,j - f| > 6/2}. Hence

ullfa= £z ) < u({fi - Sl = er2}) + u({lf - Flz e2}) = 0

asn—>00.Thusfnﬁ>f. [

Definition 1.69
A function ¢ : (a,b) — R, where —c < a < b < oo, is convex if for any x,y € (a,b) and
A€ [0,1],

¢(Ax + (1 - A)y) < A¢(x) + (1 = )g(y).

Remark

Every convex function is continuous.

Remark

The definition of convexity can also be written as

¢(1) — ¢(s) < ¢(u) — ¢(1)

t—ys u-—t

whenever a < s <t <u<b.

Theorem 1.70 (Jensen’s Inequality)
Let (Q, S, u) be a measure space with u(Q) = 1. Suppose that f : Q — I, f € L1(Q) and

¢ : I — Ris a convex function on an interval I. Then

¢( /Q fdﬂ) < /Q O(f)du.

Proof. Putt = fQ fdu. Thena <t < b. Let

b sup P96

s€(a,t) I—s
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By the convexity,
_ o) - 6()

u-—t

B

for any u € (¢, b). Thus
¢(y) = (1) + B(y — 1)

for all y € (a, b). Hence
¢(f(x)) =) —B(f(x)—1) 20

for every x € Q. Since ¢ is continuous, ¢ o f is measurable. Thus

/Q o(F)du— (1) = /Q ¢(f)d#—¢(t)—ﬁ( /Q fdﬂ—t) - /Q o(f)du— (1) - B /Q (f ~1)du > 0.

¢( /Q fdﬂ) < /Q O(f)du.

Since t = /Q fdu, we have

Definition 1.71
A family of measure {v,} is said to be equicontinuous at @ if for any € > 0 and B \, @,
there exists kg such that

sup vy (By) < €
@
for all k > ko.

Definition 1.72
A family of measure {v,} is said to be uniformly absolutely continuous with respect to u
if for any € > 0, there exists 6 > 0 such that for any B with u(B) < 6,

sup v4(B) < €.
0%

Lemma 1.73
If {v,} is equicontinuous at @ and v, < u for all a, then {v,} is uniformly absolutely contin-

uous with respect to (.

Proof. Suppose that {v,} is not uniformly absolutely continuous with respect to u. Then
there exists € > 0 such that for any n, we can find B, with u(B,) < 27" and some «, with
Va,(Bn) = €. Put Ay = U B,. Then u(Ax) < 27k+l Set A = Ni_qAk- Then Ap N A and
u(A) = 0. This implies v,(A) = 0 for all a since va < u. Observe now that

Vay, (Ay—A) = Vozn(Ak) > Van(Bn) 2 €

for all n > k. But v, (Ax — A) — 0 as k — oo, a contradiction. Thus {v,} is uniformly

absolutely continuous with respect to u. [
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Theorem 1.74
Let (Q, S, u) be a o-finite measure space. Suppose f, € LP(Q). Consider a family of measures
v, defined by

() = [150 d
A
If v, is equicontinuous at @ and f, LN f, then f,, — fin LP(Q).

Proof. Since (Q, S, u) is o-finite, we can write Q = U E; with u(E;) < oo for all k. Then
E; N\, @ and v,(E;) — 0 as k — co. Also, since v, is equicontinuous at @, for any € > 0,
there exists kg such that

supv,(E;) <€
n

for all k > ky.
We claim that f, is Cauchy in £”. Indeed,

/lfn_fmlpdﬂ:'/ |fn‘fm|pdﬂ+/ | fo = ful? du
E’io Ekon{lfn_fm|55//vl(Ek0)}

+/ o = finl? .
Ekom{lfn_fm|>5/.u(Ek0)}

Estimate from Jensen’s inequality,

J

| fu = finl” du < 27 /C | ful? du + 27 /C | finl” du = 2pvn(E;0) + 2pvm(E]iO) — 0,

c
ko Eko EI\'O

€

|fn - fm|p d:u <

H(Ek,) — 0.
/Ekom{|fn—fm|Se/u<Ek0)} H(Eg)"

For the last term, since v, < u for all y, lemma 1.73 gives that v, is uniformly absolutely
continuous with respect to u. Given any € > 0, there is § > 0 such that for all B with u(B) < 6,

vn(B) < € for all n. Thus
€
(b= gi5)) =0

as j — oo. Hence we obtain that f, is Cauchy in £”. It follows from the Riesz-Fischer

thoerem that f;, — g in £7(Q) for some g € L7 (Q). Since f, N f, f = g almost everywhere.
Thus f, — fin LP(Q). ]
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2. Banach Space

2.1. Banach Space and Bounded Linear Functional

Definition 2.1

A space X is called a Banach space if it is a complete normed vector space.

Remark

L' is a Banach space with the norm

1flL s = / 1] d.

We treat f = g a.e. as the same element in L.

Definition 2.2
Let V,W be vector spaces. Amap T : V — Wis linear if foreveryc € R, f,g €V, T(cf+g) =

cT(f) +T(g).
Definition 2.3

A linear map T : V — W has operator norm defined by

ITIl = sup [IT(/)llw-
If1lv=1

T is bounded if ||T|| < 0. We denote the set of all bounded linear operators from V to W by
B(V,W).

Proposition 2.4
Suppose W is a Banach space. Then B(V,W) is a Banach space with the operator norm.

Proof. It suffices to show that B(V, W) is complete. Let {T;} ¢ B(V, W) be a Cauchy sequence.
Then for f €V,

T = T(Dlly < 1T = TH[ 1Ay -

Hence {T;(f)} is a Cauchy sequence in W. By the completeness of W, we may define 7' f as
the limit of 7;( /) as i — 0. Now,

ITfIl < sup IT:(NI < sup [|TILA -

Since Cauchy sequences are bounded, ||Tf|| < o for all f € Vand T € B(V,W). It re-
mains to show that 7; converges to T in the operator norm. For any f € V, pick N such that
|7:(f) = T;(f)|| < € for all i, j > N. Then for fixed i,

T =T f| < |1 = T3l 1l < el £
for every f € Vand j > N. Hence ||T; — T|| < € for all i > N and the proof is complete. [
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Remark

Consider X, Y are two normed vector space. X, Y are the completion of X and Y, respectively.
X = {{x,} € X | {xn} is Cauchy} .

Define the equivalence relation {x,} ~ {yn} if imy e ||Xn — yull = 0. It is easy to see that X is
a Banach space with ||{x,}| = lim, .« ||x,]|.
For L : X — Y, a bounded linear operator, its counterpart L : X — Y is also a bounded

linear operator.

Definition 2.5
T is continuous if f; — f in V implies that T(f;) — T(f) in W.

Proposition 2.6
Suppose T : V — W is linear. Then T is continuous if and only if T is bounded.

Proof. Suppose T is not bounded. Then there exists f; € V with || f;|| < 1 for alli and ||T f;|| —
oo. Thus

—0, but T|—|=
(IITﬁll) 7 fill

fi
17 fill

Hence T is not continuous.

TS I
0 =1
70 a8 7

Conversely, suppose T is bounded. Let f; — f in V. Then

ITfi =TSNl =T (fi = DI <NTI S = fIl = 0.

Hence T is continuous. ]

Definition 2.7

A linear functional T is a linear map T : V — F, where IF = R or C is the scalar field of V.

Definition 2.8
Let V, W be vector spaces. T : V — W is linear. The kernel of T is defined as

ker(T) = {f e V|T(f) =0}.

Proposition 2.9
Let X be a normed vector space and T € X'. Then

(a) ker(T) is a closed subspace of X.

() If T # 0, there exists x € X such that T(x) # 0. Then for any y € X, there exists ¢ € R
and z € ker(T) such that y = cx + z.

Proof. For (a),let x,y € ker(T) and ¢ € R.
T(ex+y)=cT(x)+T(y) =0. = cx+y € ker(T).
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Also, let x;, — x in X. Then since T is continuous,
T(x) =1lmT(x,) =0. = x € ker(T).
n—o0

Hence ker(7) is a closed subspace of X.
For the rest part, fix x € X and f(x) # 0. For each y € X, let « = T(y)/T(x) and
z=y—-T(y)x/T(x). Then

T0) L, TO) W)

T T T T T T

Definition 2.10
The dual space of V is defined as V' = B(V,F), where F = R or C.

Remark

The dual space is a Banach space.

Remark
T : X — Y is bounded and linear. Then

IT|| = inf {c € [0,00) | ||Tx|ly < c|lx||x forall x € X}.

Example
Let X = C(]0,1]) with the supremum norm and Y = R with the usual norm. For g € X,
g(t) #00n [0,1], defineTg : X — R by

1
Tg(f) = /O F(Dg(t)dr.

Now for || flle < 1,

1
g (/)| = ‘ /0 F(Dg()dr

1 1
< /0 F(g(®)] di < /0 0] sup 7o)l d

1 1
Il /0 (1) dr < /0 (0] dt.

1,2
/ 8 ..
o 18]
Example

Consider X =Y = C([0,1]) with the supremum norm. Define T : C1([0,1]) - Y by Tf =
f’. Then consider the sequnce f,(x) = e‘”(x_l/z)Q, fix) = e‘”(x‘1/2)2(—2n(x— 1/2)). Hence
T full /N full = V2re Y2 — oo as n — oo. Thus T is not bounded.

Take f = g/lgl,

1 1
Tef| = - /0 gl dr. = |Tgll = /0 (0] dt.
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2.2. (P Space

Definition 2.11
P = {{xi}ie_r | llxll, < oo}, where I is an countable index set and ||x||, = (¥; |x,-|p)1/p, 1<p<

oo, is called the (P space. For p = o, the norm is defined as ||x||, = sup; |x;|.

Definition 2.12
f : X > Yiscalled a homomophism if it preserves the algebraic structure. In particular,

for X,Y being vector spaces, f is a homomorphism if f(cx +y) =cf(x)+ f(y).

Definition 2.13

f : X > Yiscalled an isomorphism if it is a bijective homomorphism.

Definition 2.14
f X - Yiscalled an isometry if || f(x)|ly = ||x||x for all x € X.

Example
A rightward shift operator Sg : P (IN) — ¢P(IN) is not an isomorphism, but Sg : (P(Z) —
P (Z) is.

Lemma 2.15 (Young’s Inequality)
Let 1 < p,p’ < cowith 1—17 + ]% = 1. Then forall a,b > 0,

ppp
abs a—+—/
p P

Furthermore, the equality holds if and only if a? = b?".

Proof. If a = 0 or b = 0, the inequality is trivial. Suppose a,b > 0. Let t = 1/p and we can

write
log(ab) = log(a) +log(h) = tlog(a”) + (1 — 1) log(b”') < log(tap +(1- t)bf”)

by the concavity of logarithm and Jensen’s inequality. Exponentiating both sides yields the
desired inequality. The equality holds if and only if a” = b”" by the Jensen’s inequality. m

Theorem 2.16 (Holder’s Inequality in £7)
Let 1 < p,p’ < oo with [—1) + 1% = 1. Then forall f € ( and g € €,

Ifgl < 1N, Ngl, -

Moreover, the equality holds if and only if f = cg for some constant c.

Proof. If one of f or g is zero, the inequality is trivial. If p = 1 and p’ = oo, | figi| < |lglle | fil-

Summing over i yields the desired inequality. For the case p = o0 and p’ = 1 the proof is
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similar. Now suppose 1 < p < o and 1 < p’ < co. Without loss of generality, we may assume
that [|f]l, = llgll,, = 1. By Young’s inequality,

A, leid”
pl

|figil <

Thus

|fil” jgil” _ 1 1
Ifglly =D Ifigil < > ==+ > == = = lIflh + = lgll?, = 1.
- — p — P P P

Hence we obtain the desired inequality. The equality holds if and only if | f;|” = |g;|”" for
all i by the Young’s inequality. In general, the equality holds if and only if f = cg for some
constant ¢ after scaling the both sides of the inequality by c. [

Remark
We call p’ the conjugate exponent of p for 1/p +1/p’ = 1.

Theorem 2.17 (Minkowski’s Inequality in £7)
Let1 < p <co. Then forall f,g € (P,

1f+gll, <Al + Mgl -

Proof. If p = 1, the inequality comes from the triangle inequality. For 1 < p < oo,
If +glly = > 1fi+ il 1 + @il
i
< DS+l + ) gl 1 + gl
i i

1/p’
<7, (Z fi+ gfl(P‘1>P’) +llgl, (Z i+ gi|<P-1>P’)
i i

= £, ILf +gll5" +ligl, ILf + gllh'”

1/p’

by the Holder’s inequality. Rearranging the inequality yields

1F +gll, = I1F + g™ < 11£1L, + gl -

For p = oo,
Ilf + gl = sup|fi + &l < sup|fi| + sup [gi| = [ flloo + 18]l -
l l l

The proof is complete. n

Remark
The Minkowski’s inequality is exactly the triangle inequality in £” spaces. We can thus confirm

that € norms are indeed norms.
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2.3. L? Space

Definition 2.18
Let (X, A, u) be a measure space and 1 < p < . The space L (X) consists of all equivalence

classes of measurable functions f : X — R such that

1/p
wmﬁ{ﬂvmﬂ <o

where f ~ g if f = g a.e. and the norm is defined on a representative of the equivalence class.

Definition 2.19

f : X — Ris measurable. The essential supremum of f on X is defined as

esssupy f = inf {supg ‘ g= f,u-a.e.} =inf{c e R| u({x | f(x) > c}) =0}.
X

We called f essentially bounded if esssupy f < co. The space L% (X) consists of all equiv-

alence classes of essentially bounded measurable functions with the norm

/1l g~ = ess supx | f] .

Theorem 2.20 (Holder’s Inequality in £L7)
Let 1 < p,p’ < cowith 1% + [% =1 Then forall f € LP and g € LV,

I7glly < 11711, gl -

Moreover, the equality holds if and only if f = cg for some constant c.

Proof. For the case p = 1 and p’ = oo, notice that

|fel < |flesssuplg| = ||fg||1=/IfgldﬂS/IerSSSUPlgldﬂ=||f||1||g||oo-

For the case p = c0 and p’ = 1, the proof is similar. Now suppose 1 < p < oo and 1 < p’ < co.
If one of f or g is zero, the inequality is trivial. Without loss of generality, we may assume

that [|f]l, = llgll,, = 1. By the Young’s inequality,

Firid
Ifgl < —+—.
D D

Integrating both sides yields

? d 11
gl = [l s [Laur [1Egu=20 Loy
p p p P

Hence we obtain the desired inequality. The equality holds if and only if |f|’ = |g|” "ae.
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by the Young’s inequality. In general, the equality holds if and only if f = cg a.e. for some
constant ¢ after scaling the both sides of the inequality by c. [

Theorem 2.21 (Minkowski’s Inequality in £?)
Let 1< p <oo. Then forall f,g € L?,

1f+gll, < ILFll, + Mgl -

Proof. If p = 1, the inequality comes from the triangle inequality. For 1 < p < oo,

||f+g||§:/|f+g|”d#=/|f+g||f+g|”‘1dﬂ
S/Ifl |f+g|”‘1du+/|g||f+g|"‘1dﬂ

Dy’ 1/p’ D 1/p’
<lA1, (/ S +glP7V" dﬂ) +llgll, (/ |f +glP7P dﬂ)
= 1£1, 1LF + gl + gl 1S+ gllh'™

Rearranging the inequality yields

LF+gll, = If+ gl < 1fN, + gl -

For p = oo,

1f +8llo = esssup |f +g| < esssup|f| +esssup|g| = || fllc + lIgllo -

The proof is complete. u

Theorem 2.22

1 < p < oo. Simple functions are dense in L7.

Proof. For p < oo, consider f > 0 and f € L. There exists a sequence of simple functions
f, /" f a.e. Note that | f — f,|” < |f|” € £!. By Lebesgue’s dominated convergence theorem,
Ifa = fll, » 0asn — oo. For p = oo, pick an f in the f-equivalent class such that f
is bounded. Then since the approximation of simple functions can be done uniformly, the

result follows. u

Remark
A simple function s = 3, cixa, € LP must have u(A;) < oo for every i such that c¢; > 0. Since

contiuous functions can approximate simple functions, they are dense in L? as well.

Remark
Step functions and continuous functions with compact supports are dense in LP for 1 < p <

oo. This can be seen by a slight modification of the proof of proposition 1.35. Let € > 0 be
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given. First, for f € LP, we can find some M > 0 such that

/ 1P du < e.
|x|>M

Next, since LP([-M,M]) ¢ LY([-M, M)), the result from proposition 1.35 applies, and we
can find a step function s such that ||f — s||., < € on [-M, M]. This implies

/H 1 sl du s /|| = (=M. M),
x| < x|<

Thus
||f—s||£:/ Ifl”du+/ sl du < € + P u([-M.M]).
|x|>M |x|<M

Hence step functions with compact supports are dense in LP. Using the same approximation
technique in proposition 1.35, we can find a continuous function g such that || f — g|| p <e€as
well.

Lemma 2.23
1< p<oo g€ LPand ¥llgkll, < . Then there exists f € LF such that Y gx = f
pointwise a.e. and in LP.

Proof. Define h, and h by h, = };_;|g«| and i = }; |gk|. Then h, / h. By Lebesgue’s
monotone convergence theorem,

n—o0

lim hgdp:/hpd,u.

By Minkowski’s inequality,

1/p n p p n 1/p n
( / hﬁdu) : ( / (Z |gk|) d,u) < ( [1ar dﬂ) <) lgel, < o0
k=1 k=1 k=1

for every n, so h € LP and |/hl[, < M for some M bounding > ||g«|l,- Now since > g«
converges absolutely to some f pointwisely a.e. and |f| < 4,

‘f - Zn: 8k
k=1

By Lebesgue’s dominated convergence theorem,

p n p
< (Ifl +) |gk|) < (2h) € L.
k=1

f=2 gk”p — 0 asn — oo. Thus the
proof is complete. .

Theorem 2.24 (Riesz-Fischer)

L? spaces are complete.

Proof. First, we focus on the case where 1 < p < . Let f; be a Cauchy sequence in L”.
Take a subsequence f;, such that || Jjr — fkj” <27/ Letg j = Jij — fk; € LV and we have
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¥ ”gj”p < co. By the lemma 2.23, there exists f € L such that f = }; g; a.e. and

j-1
lim fi; = im fi, + ) 80 = fu +/ € L.
i=1

Since f; is Cauchy and a subsequence converges, the original sequence f converges to fi, +
f € L7 as well. We now consider the case where p = 0. Let f; be a Cauchy sequence in L.
Then for almost every x, { fi (x)} is a Cauchy sequence in R. Thus we can define f(x) as the
limit of f;(x) as k — co. On the set where f; (x) does not converge, we let f(x) be zero. Then
f € L% since {f;} is Cauchy and has an uniform bound except on a measure zero set. Also,
for any € > 0, we can find N such that ||fk - fj||00 < eforall k,j > N. Hence || fx — fllo < €
for all k > N. Thus f; — f in £L*. We conclude that £? spaces are complete. ]

Theorem 2.25
Let1 < p < oo, Let f,, € L? be a sequence of measurable funcitons on a o-finite measure space
X If f, — fin LP, then there exists a subsequence f,, such that f,, — f a.e. on X.

Proof. Using the Markov inequality,

p(r € X 1A - F@] 2 ) = pl{r € X | () = F @I = )
<= [ 1 - 701 du= S 1= 11— 0

as n — oo, Thus f, 5 f. By theorem 1.66, there is a subsequence f,, such that f,, — f a.e.
k k

on X. [ ]

Definition 2.26

A metric space (X, d) is separable if there exists a countable dense subset.

Theorem 2.27
Let1 < p < co. LP(R) is separable.

Proof. Consider the collection of sets 7 = {(q,r) | ¢ <r € Q}. Then the family of functions
F = {Z?zl CiXI; | LLel,cieQ,ne ]N} is countable. We claim that F is dense in £?(R). In-
deed, since the continuous functions with compact supports are dense in £?(RR), it suffices
to show that any such function can be approximated by functions in F. Let f € L”(R) be
a continuous function with compact support. By the uniform continuity, there exists 6 > 0
such that for all x,y €e Rwith |x — y| < 6, [f(x) — f(¥)] < €.

Consider 7’ = {I € I | I nsupp(f) # @, ul <}, an open cover of supp(f). By the com-
pactness of supp( f), we can find a finite subcover 7" = {I; | i = 1, ...,n} such that supp(f) C
U, I;. By the density of Q in IR, we can find ¢; € Q such that |f(x) — ¢;| < € for all x € I;, for
i=1,...,n. Let g = 3" cixs, € F. Then || f — gl <.

If - gll? = / f - gl du < / e’ dy = € p(supp(f — g))-
supp(f—g)
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Since € is arbitrary, we conclude that F is dense in £”(R). Thus £L”(R) is separable. [

Remark
L°(Q, u) is not separable in general. For example, let Q = [a,b]. Suppose that {f,} is a
countable dense subset of L (Q). Definen : [a,b] — N such that HX[u,b] - f,,(x)H < % Then if

X1 # X2, || X[a.x1] _X[H’XZ]”OO = 1. This implies that f,(x,) # fy(xy) and n(x1) # n(x2). Thus n is

injective. But [a, b] is uncountable, a contradiction. Hence L (Q) is not separable.

2.4. Dual Space

Theorem 2.28 (Dualities of {” Spaces)
Let 1 < p < co. Then (£P) = (7', where p’ is the conjugate exponent of p.

Proof. We need to prove that there exists an isometric isomorphism ¢ : ¥ — (£7) such
thatygf =2, figiforall g € ¢P" and f € 7. We show that y is well-defined, linear, bounded,
bijective, and isometric.

First, we show that i is well-defined. For f € £” and g € ¢,

wefl < > Ifigl < I, ligl, < oo

by the Holder’s inequality. Thus ¢ g € (¢7)" is well-defined.

Next, i is linear since for g1, g2 € ¢" and ¢ € R,

W(cg1 +g2)(f) = Z filcgu +ga) = ¢ Z figui + Z figai = cwg1(f) + vga(f)

for all f € £P. Hence ¥/(cg1 + g2) = cg1 + ¥ go.
Now, to show that ¢ is bounded,

11, = 1}

We see that ||| < 1. Next, let 4 € ()" and define g by g; = h(e;). Then

1/p’ 1/p’ 1/p’
||g||p,=(2|g,-|l”) :(Zm(e,-w”) S(lehll”') = ||l

lwgll = sup {lwgf1|Ifll, =1} = Sup{

Z figi

< sup {ligll,} <lgll, -
=1 b

1

Then g € ¢”". Furthermore, for such g,
ws(f) = figi= ) fiher) = h(z ﬁ-e,-) = h(f)
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for every f € ¢P. Hence ¥ is surjective and || g|| = ||/]|. The isometry of ¢ is immediate from
that

lvgll < ligll, < llAll = llygll
Finally, ¢ is injective since otherwise there exists ¢ # 0 such that yg = 0. Then |g[[,, = 0

by the isometry of , which implies that g = 0, a contradiction. We conclude that ¢ is an
isometric isomorphism and the proof is complete. [

Proposition 2.29
1<p<co 1/p+1/p’ =1 Let g e LV (X,u). Then the mapping Tg : LV (X, u) — R defined
by

re() = [ fud

is a bounded linear functional. Furthermore, ||Tg|| r» g = llgll -

Proof. We start by checking that Tg is well-defined. For f € L7,

Ts(f)| =‘ / Fodu| < / Feldu < 1711, Ngll,

by Hélder’s inequality. Thus Tg(f) € R. Also, we obtain that ||Tg|l ;»_g < llgll,/. For the
linearity, let ¢ € R and fi, fo € £L7.

Tg(cfi+ fo) = /(Cfl + fo)gdu = C/ figdu + / fegdu = cTg(f1) +Tg(fe).

Lastly, to furnish the isometry, let g # 0 and define

gl \P'P ) ( M )”'
= du = d 00,
! Sg“(g)(ugn,,,) =>/ L7 du / lell,) -

Then f € LP and || f||, = 1. Also,

r'lp
T(f) = / sgn(g)(”ﬁ' ) s =llgll, .
.

It follows that || Tg|l ;r_r = llgll,- "

Theorem 2.30 (Riesz Representation)
Let (X, A, 1) be a o-finite measure space and 1 < p < co. Then the mapping T : LV (X, u) —
(LP(X,p)) defined by Tg € LP(X, ),

Tg(f)=/fgdﬂ,

1s an isometric isomorphism.
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Proof. By proposition 2.29, Tg is a bounded linear functional. Besides, let c € R and g1, g2 €

’

Lr,
T(cg1+g2)(f) = /(Cg1+gz)fdu = C/ glfdﬂ+/ gafdu = cTg1(f)+Tg2(f) = (cTg1+Tg2)(f)

for all f € L. Thus T is linear. It remains to show that 7T is a bijection. We first verify that
T is surjective.
Consider the case where p > 1 and u(X) < . Let h € (L?)". Define v : A — R by

v(A) = h(xa). We claim that v is a finite measure and v < u. Since

V(A = 1h(x (AD] < el go g lxall, = 1Al zo—g #(A)YP,

we see that v is finite since so is u. Also, if u(A) = 0, then |v(A)| = 0 and hence v(A) = 0.
Thus v < u. For finite additivity, let A1, A2 € A be disjoint.

v(A1 U Ag) = h(xa,ua,) = h(xa, + xa,) = h(xa,) + h(xa,) = v(A1) +v(Ag).

To show the o-additivity, let A; € A be countably many disjoint sets. Put A = U;A;, A =
B, + C, where B,, = U’}:1Aj and C, = U;":MIAJ-. Then since B, N C, = @,

n

V(A) = v(By + Cp) = v(By) +v(Cy) = Y v(A)) +v(Cy)
j=1

for all n. Since u(X) < o0, 3;; u(A;) < oo and u(C,) — 0 as n — oo. Thus
V(Cl = 11(C)I < NIl gog H(C)MP — 0.

We conclude that v(A) = 3; v(A;) and v is a measure.
Next, since v < A, by the Radon-Nikodym theorem, there exists a unique g € £L1(X, u)
such that

h(xa) = v(A) = /gdu = /)mgdu =Tg(xa).
A X
for arbitrary A € A. Extend by linearity to p-integrable simple functions, say s = 3" ; cixa,.

n n

h(s) = )" cih(xa) = ) ci /XXA,-gdﬂ = /XZ cixa8du = /ngdﬂ =Tg(s).
A i=1

i=1 i=1

For a general f € L7, by separating f = f* — f~ if necessary, we may assume that f > 0.
By lemma 1.20, there exists a sequence of simple functions s, /' f. Then by Lebesgue’s

monotone convergence theorem, || f — s,|| » — 0. Since £ is a bounded linear functional, it is
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continuous, and hence h(s,) — h(f) as n — co. We obtain that
() = fim (s,) = lim [ sugdu= [ Fodu=Te()
n—oo n—00 X X
for all f € £P. Thus Tg = h. It remains to check that g € £7'. Let

lgl” tsgn(g) if [g(x)|” Tt <n,

nsgn(g) otherwise.

fn:

Then f, € £7 and f,g / |g|”".

Tg(fu)l = ‘/ Jagdp| < ITgll o g L/l -

Also, fog = fullgl = |l 1£u1Y PV = | £,]P and

17l = / | ful” dp S/fngdﬂ < Tgll gor—r 1 fall, -

As a result,
lell, = [ 1t du= lim [ fugdu < Tl o mlLfill, < .

Hence g € £ and T is indeed surjective. Furthermore, such g is unique by the uniqueness
of the Radon-Nikodym derivative. We also conclude that T is injective.

For the case where p = 1 and u(X) < oo, p’ = . We consider the same mapping T
with Tg(f) = f fgdu. We claim that g € £*. Suppose g ¢ L%. Then for every K, the set
Agx = {x € X | |g(x)| > K} has positive measure. Define fx = sgn(g)ya,/u(Ak). Note that
Il fxlly = 1. If g > 0, then

Te(fi)l = / frgdu > K

for all K. But Tg is a bounded linear functional, which is a contradiction. Thus g € L.

Finally, we prove the case where X is o-finite. Write X = U, X,, where u(X,) < co and
X, C Xp4+1. For every f € LP(Xy, ), consider f € £P(X, ) defined by f = fon Xz and f =0
on X — Xi. Then [|fll zr(x,) = Ifllgr(x)- Let h € (LP(X)) and consider hy € (L7 (Xk)) by
hi(f) = h(f). Then ||| < ||h||. By the previous result, we can find a unique gx € L” (X, u)
such that

hi(f) = / Jerdu, gell gr x) < Nhxll < Al -

Since X, C Xp41, for f € LP(Xy), we have h(f) = h(f) = hi1(f) and gx = gis1 p-a.e. in
Xi. Define g = g4 on X; with ||g||£,,/(X) < ||k||. Let f € LP(X, u). Holder’s inequality implies
that fg € £L1(X, u) and

h(fxx,) = he(f) = / Fxx, 8rdu
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Since fxx, <|fl, fxx = f € LP(X, n) by Lebesgue’s dominated convergence theorem. Also,

m(h) = [ Posadi— [ fodu=Te(s)
by Lebesgue’s dominated convergence theorem. Thus T is indeed the desired isometric iso-
morphism. u

Remark

(L) 2 LY. Consider C*([-1,1]), a subspace of L>. Define a linear functional § : C°([-1,1]) —
R by 6(f) = f(0). Clearly 6 € (L®)'. Now suppose there exists g € L such that 6(f) =

f_ 11 fgdx. Let f = ya where A is measurable. Then f € L= and by definition,

1
0= £(0) = 6(f) = / fadr = /A gd.

Thus g = 0 a.e. and 6 = 0, a contradiction.

Definition 2.31
M(X) is a space consisting of all finite signed measures. For v € M(X), the total variation
norm of v is defined by ||v|| = v*(X) + v~ (X), where v* and v~ are the Hahn-Jordan decom-

positions of v.

Proposition 2.32

M (X) with the total variation norm forms a Banach space.

Proof. Clearly, M (X) forms a vector space. We check that ||-|| is indeed a norm. For v € M(X),
clearly ||v|| = 0. If ||v|| = 0, then v*(X) = v~ (X) =0, v*(A) and v~ (A) are zero for all A € A,

and hence v = 0. Conversely, if v = 0, then so are v* and v~ and hence ||v|| = 0. For ¢ € R,
llevll = lel v (X) + lelv™ (X) = el (V" (X) + v (X)) = lel VIl -
Lastly, let v, u € M(X). Notice that (v + u)* <v* +u"and (v+u)” <v~ + u~. Thus
v +ull = (v + )" (X) + (v + )" (X) <V (X) +p"(X) + v (X) + p (X) = vl + 1lull,

proving that ||-|| is indeed a norm.

For the completeness, let v, be a Cauchy sequence in M (X). We define a measure v by
v(A) = lim, . v,(A) for all A € A. We claim that the limit exists and v is indeed a finite
signed measure. Since the sequence is Cauchy, for every € > 0, there exists N such that

(Vi — Vn)+(X) + (Vi =) (X) = [[vin —vall < €
for all m,n > N. Since both (v,, — v,)* and (v,, — v,,)” are positive measures, we have
(Vi — Vn)+(A) < (Vi — Vn)+(X) <€, and (viy—vn) (A) S (v —vy) (X) <€
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for every A € A. Thus
[Vin (A) = vn(A)] = |(Vm —Vn) " (A) = (Vi — Vn)_(A)l <€

It follows that for any fixed A € A, v,(A) is a Cauchy sequence in R and hence the limit
exists. Also, taking A = X, we see that v(X) is finite. To show that v is a measure, first note
that v(@) = 0. For finite additivity, let A, A2 € A be disjoint. Then

v(A1 U Ag) = lim v, (A1 U Ag) = lim v, (A1) + v,(Ag) = v(A1) + v(Ag).

For the o-additivity, let A,, € A be countably many disjoint sets. Put A = U,A,,, A =B, UC,
where B,, = U’}:1Aj and C, = U;O:n+1Aj' Since v(X) < o0, 3, v(A;) < co and hence v(C,) — 0

as n — oo. Thus
n

V(A) = v(By) +v(Cy) = ) v(Aj) +v(Cy)
j=1

for every n and by letting n — co, we obtain v(A) = X}; v(A;). Finally, fix n and let m — oo,
Iy = vall = Tim [l = vall = Tim [y (X) = va(X)] = [y (X) = v(X)] < e

for all n > N. Thus v,, —» v in norm and M (X) is complete. [

Definition 2.33
Let f : [a,b] — R. The variation of f is defined by

n—1
Vp(f) = D If (i) = F(1)],
i=0

where P = {a=1ty<t; <---<t, =Db}is a partition of [a,b]. The total variation of f on
[a, b] is defined by
V(f) = sup Ve (f).

Definition 2.34
The bounded variation space BV ([a, b]) consists of all functions f : [a,b] — R such that
V(f) < co. For f € BV([a, b)), the total variation norm is defined by || f||;v = | f(a)|+V(f).

Proposition 2.35

BV ([a, b]) with the total variation norm forms a Banach space.

Proof. 1t clearly forms a vector space. We check that ||-||; is indeed a norm. First, clearly
I fllzy = 0. If || fll;v = O, then f(a) = 0 and f(¢) = f(¢') for all t,¢ € [a,b]. Hence f = 0; if
f=0,thenV(f) =0and f(a) =0and ||f|l;y = 0. Next, for c € R,

n-1 n—-1
leflly = lef @]+ Y lef(tis1) = cf ()] = lel {I£ (@] + D 1F (ts1) = £ = lel 1 Fllgy
i=0 i=0
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Lastly, let f,g € BV([a, b]). Then

n—1

If +gllry = Supl(f+g)(a)| + Z |(f + &) (tir1) = (f + &) (1)

< sup|/(@)] + lg(@)] + Z £ (tie1) = ()] + Z 18 (ti+1) - g (8)]

i=0 i=0

< sup|f(a)l + Z f(ti2) = £ (1)] + sup g(@)] + Z 18(tix1) = g(t)| = Ifllgv + liglzy -
i=0 i=0

Thus ||-||7y 1s indeed a norm.

For the completeness, let f;, be a Cauchy sequence in BV ([a, b]). For € > 0, there exists
N such that || f;, — full;y < € for all m,n > N. Given any x € [a, b], consider the partition
P ={a <x<b}.

| fn (x) = fu (O] = [fn(x) = fin(a) + fin(a) = fula) + fu(a) = fu(x)]
< (S (x) = fa (X)) = (fm(a) = fu(a))| + | fn(a) = fu(a)l
SV = fo) + | fm(a) = fu(a)| = €.
Thus {f,(x)} is a Cauchy sequence in R and hence converges pointwisely to, say f(x). Fur-

thermore, observe that the choice of N does not depend on x, and thus the convergence is
uniform. We claim that f € BV ([a, b]). Indeed, for any partition P ={a =19 < --- <t, = b},

n—1
D1 (ten) = f(1)] < Z |f (ti41) = fiv t41)] +Z (1) = fu () + V().
i=0 i=0

Since the convergence is uniform, we can choose N such that | f () — fv(¢)| < €/(2n). Thus

H

n—

|f(tix1) = ()] < € + V(fw).

I
o

i

Since fy is of bounded variation, we see that f € BV([a, b]) as well. Lastly, to show that
Il f = full;y — O, first note that by definition we have |f,(a) — f(a)| — 0. It remains to show
that V(f, — f) — 0. For any € > 0, there exists N such that Vp(f,, — f,) < e forall m,n > N
and some partition . Taking m — oo, we obtain Vp(f — f,) < € for all n > N. Since the
partition is arbitrary, we have V(f — f;,) < e for all n > N. Thus f, — f in BV([a, b]) and
BV ([a, b]) is complete. [ ]

Theorem 2.36
M([a, b)) is isometrically isomorphic to BV(|a, b]).

Proof. We define the mapping ¢ : M([a, b]) — BV ([a, b]) by

p(1) = ¢v(1) = v(la,1]).
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First, we show that p € BV([a, b]). For any partition P ={a =19 <--- <t, = b},

)—l

n-1

lo(tiv1) = p(t)] + |p(a)| = Z Iv(la, tia]) = v([a, D] + [v({a})]

n—

Iy
(=)
p—AO

n—

Sagh

IV((tz,tz+1])| +|v({a})]

p—AO

: N

= IVI ((#, tie1]) + vl ({a}) = [v] ([a, b]) = [Iv]|.

i=0

Since v is a finite signed measure, p € BV ([a, b]). Furthermore, taking supremum over
all partitions, we obtain that ||p||;y = [|v]|. It remains to show that ¢ is an isomorphism.
Suppose v, u € M([a,b]) and ¢v = ¢u. Then v([a,t]) = u([a,t]) for all t € [a, b]. Since [a, ]
generates the Borel o-algebra on [a, b], we have v = u. Thus ¢ is injective. For surjectivity,
let p € BV([a, b]). Consider the signed measure v defined by v([a,?]) = p(¢) and v(@) = 0.

Then v is a finite signed measure and ¢v = p. The proof is complete. [

Lemma 2.37

Let X be a normed vector space and M C X be a proper subspace. Suppose S : M — Risa
bounded linear functional. Then for every x € X \ M, there exists a linear U : M’ — R such
that ||U||y—r = ISl yy—gr, where M’ = M + Rx.

Proof. Clearly M’ is a subspace; furthermore, M’ = M (P Rx since if v = w + cx = w’ + ¢x
for some w,w’ € M and ¢,¢’ € R, then (¢ — ¢’)x = w —w’ € M. Since x ¢ M, this implies that
¢ = ¢, w = w' and hence the representation is unique.

Now we can define U on M’ by U(w + ¢cx) = Sw + cA for any w + cx € M’ and some
A € R to be determined. To make U have the same norm as U, we need to find A such that
|Sw + cA| < ||S]| ||lw + c¢x|| holds for all w € M and ¢ € R. Clearly if ¢ = 0, the inequality
is already satisfied. For ¢ # 0, by deviding both sides by |c|, we see that the condition is
equivalent to |Sw + 2| < ||S|| ||w + x|| for all w € M. Now for any w,v € M,

Sw=8v = S(w=v) < |S(w =) < [ISI[{lw = vl = IS llw +x = v+ )| < [ISI| (IIw + x][+][v + x]]).

Thus
Sw—|IS|[lw + x|l <Sv +[IS]| ||v +x]| .

Fix v and taking supremum over all w € M on the left,

sup Sw — ||S|| ||lw + x]| < Sv + ||S]|| ||v + x|| .
weM

Taking infimum over all v € M on the right,

sup Sw — ||S|| ||lw + x|| < 1nf Sv+|S|||lv + x]| .

weM
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Hence there exists A4 € R such that
Sw) = IS w + x|l < =2 < S(w) + [IS]] [|w + x]]
for all w € M. Picking this A, we see that
[Sw + A < (IS {Iw + x|]

as desired. Thus U is a bounded linear functional on M’ with ||U||; g = |ISIly—gr- Also, on
M, U = S and hence U is an extension of S. [ |

Theorem 2.38 (Hahn-Banach)

Let X be a normed vector space and M C X be a subspace. Suppose S : M — R is a bounded
linear functional on M. Then there exists a bounded linear functional T : X — R such that
Ty =S and ||ITllx_gr = ISlly-r-

Proof. The proof relies on Zorn’s lemma.! We start by constructing a partial order space.

Let (P, <) be a partial order space with
P={(U,Y)| M cY c X,Y is a subspace of X, U is a bounded extension of S on V}

and the partial order: (Uq,Y1) 2 (Ug,Ys) if Y1 C Yo and Us is a bounded extension of U; on
Ys. Clearly the pair indeed forms a partial order space. We now check the assumptions of
Zorn’s lemma. Let C = {(U,,Y,) | « € A} with an arbitrary index set A be a chain in P. Put
Y = UgeaY,. We claim that Y is a subspace of X. Indeed, for y;1,y2 € Y and c¢1, c2 € R, there
exist a1, ag € A such that y; € Y,, and y3 € ¥,,. Since Y is a chain, one of them is a subspace
of the other, say Y,, is a subspace of ¥,,,. Then y1,ys € ¥,, and hence c1y; + cays € Ya C Y.
Thus Y is a subspace.

Next we need to define a bounded linear functional U on Y so that U is a bounded exten-
sionof SonY. For y € Y, we can find an @ € A suchthat y € Y, and set U(y) = U,(y). Such U
is well-defined since if @1 and a2 are two indices satisfying y € Yy, NYy,, then Uy, (y) = Uy, (y)
since one of them is an extension of the other. Also, U is linear since U, is linear for every
a € A. Lastly, U is a bounded extension of U, on Y for any @ € A because every U, with
(Ua,Y,) X (Uy,Y,) is a bounded extension of U,. We conclude that (U,Y) € P is an upper
bound of C.

By Zorn’s lemma, there exists a maximal element (7, Z) € P. We claim that Z = X.
Suppose Z ¢ X. Then there exists x € X \ Z and also a bounded extension 7’ of T on
Z+Rx 2 Z by lemma 2.37. But then (7’,Z+Rx) € P and (T, Z) < (T’, Z + Rx), contradicting
the maximality of (T, Z). Thus Z = X and T is a bounded extension of S on X. [

1Zorn’s lemma states that if every chain in a partially ordered set has an upper bound, then the set has a
maximal element. It is a direct consequence of the axiom of choice.
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Theorem 2.39 (Riesz Representation of C([a, b]))
C([a,b]) = BV(|a,b]) = M([a, b]) isometrically.

Proof. In theorem 2.36, we have shown that M ([a, b]) = BV([a, b]). We are going to show
this by constructing an isometric isomorphism between C([a, b])’ and BV ([a, b]).
Let X = C([a,b]) and € € X’. £ : X — R is a bounded linear functional. We need to find

av e M([a,b]) such that
((f) = d
= sa

for f € C([a,b]). LetY = B([a,b]) = {f :[a,b] - R | f is bounded}. By Hahn-Banach
theorem, there exists a bounded linear extension L : Y — Rof £. Now if f = y[,, €Y, then

L(f) = /[ | andy = v(la.) = plo)

We claim that p € BV ([a, b]). For any partition ¥ = {a =ty < --- < t, = b},

n-1

n-1
Vp(p) = " 1p(tin1) = p(t)] = D" |L(Kasn)) = LXas)]
i=0

i=0
n-1
Z X (t;, 141151
i=0

n—1
Zm,tm]si) < Il
i=0

by letting s; = sgn(p(ti+1) — p(t;)). Thus p € BV([a, b]) and ||p|l;v < |IL|| = ||€]|. To extend to
f € C([a,b]) so that

n—1
= L(X(Ii»tHl])si =L
i=0

< Il

[o¢]

t(f) =L(f) = fdv,

[a.b]
we first note that by our established result, f = x|, € Y holds. By linearity so does simple

functions. For f € C([a, b]), consider

n—1
he (1) = F(@) + ) FE) X001 ().
i=0
Since L is continuous and hp — f uniformly as ||P|| — 0, we have

b
L(f) = lim L(hp) = / fdp.

I#11—0

L is an extension of £ and hence

b b
() = / fdp = f(a)p(a) + / fdp.
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Finally, we claim that ||| < ||pll;y < ||L|| = ||€]|. Take f € X.

/abfdp

Hence ||| < |lpllzy < IIL|| = ||€]]. It follows that the mapping ¢ — p is isometric. Conversely,
if p € BV([a, b]), define

1E(HI =

S Al lollzy < WMl LN = TN f Nleo -

b
(1) = f(a)p(a) + / fdp.

We need to check that ¢, is linear and ||p||7y < [|€]| < ||pllzy. €, has an extension L, : ¥ — R.
Define A(t) = L, (X[a,])- Then llpllzy = 141l < ||L|| = [|6]|- n

Remark
If ¢ € C([a, b]), there exists p € BV([a, b]) such that

(f) = / " faps

if p € BV([a. b)), b
6,(f) = f(a)p(a) + / fdp

and |6, = Il

Definition 2.40
Let X be a Banach spaceand J : X — X", the canonical mapping defined by J : x — (T + Tx)
for T € X'. X is called reflexive if J is surjective.

Remark
Intuitively, X is reflexive meaning that X = X”. Such canonical mapping is well-defined since
X =T — T(x) isindeed a bounded linear functional on X', which we verify here. This is linear

because
(T +8)=(cT+8)(x) =cT(x)+S(x) =cx(T) +x(S)

for c e Rand S € X’'. To show that % is bounded, we have
IX(D)| =T ) < T lxll = T x llxllx

Definition 2.41
A Banach space X is said to be uniformly convex ifforalle > 0, x,y € Xwith||x —y|| > € >0

and ||x||, |ly]l <1, we have

Hx+y

<1-¢
2=

for some 6 > 0 depending on €.

Remark
An equibalent definition of the uniform convexity is that for ||x||, |||l < 1 with ”)%” >1-0
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for some 6 = 6(€) > 0, then ||x — y|| < €. Indeed, if ||x — y|| > €, then from the definition of

uniform convexity, we have

= l=1-e

By contrapositive, if |52|| > 1 - 6, then |x — y|| <e.

Theorem 2.42 (Clarkson)
LP(Q, u) is uniformly convex for 1 < p < .

Proof. Consider the function @ : R? — [0, o) defined by

[x1]? + |xal? ‘xl + X2 ‘P

a(x) = 2 2

for x = (x1,x2) € R% Observe that a(x) > 0 for all x € R? and a(x) = 0 if and only if

x1 = xg by the strict convexity of |-|”. Now given € > 0, choose 1 < €”/2. Consider the set D =
{x € R2 | lx1]? + |x2|? =1, |x1 —x9|P > 17} Then D is a compact set. By the compactness, we
can set 6 = inf,cp a(x) > 0. We now claim that if x € R? satisfies |x; — xa|” > n(|x1]” + |x2|?),

then
a(x)
7

X117 + |x2]? <

By the assumption, we may assume that x # (0, 0). Set # = (Jx1]|” + |x2|”)Y?. Then

X1|P X9 |P p
’7 +’7 = 1, and ‘———

Thus

alx
o el + eal? = 7 <

0 <a
tp 6

t

C):a@)

The claim follows.
Now let f,g € LP(Q, u) with ||f]l,,lIgll, < 1and | f -gll, > € Put

E={xeQl|f(x)-g@I” 2n(f)+[gx)I")}.

Using the claim and a(x) > 0,

JS/UFQWM=/UFQWW+/Lﬁ@WW
Q E Ec€

f-gl
32”/7 du+n [ |fIPdu+n [ |g]Pdu
E Ec€ Ec¢
Py lolP
Sz,,/Ifl Fq i+ 2n
E

Szp—l/a(f g)d +2
E

<2”‘1/|flp+|g|f’ ‘f+g”
B 2

p-1 2p—1 14
du+2n< —+2n— —
H n= 0 n 9

f+g
2

p
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Hence

+g|f P—2 +
‘f 8l <1-6 p_1"=>Hf2g <1-6
p 2 p
for some 6 > 0. We conclude that £7(Q, ) is uniformly convex for 1 < p < oco. [

Example
Fix x € X and define the functional L, : X’ — Rby L,({) = {(x). Then L, is a bounded linear
functional. To see this, let c € Rand (1,05 € X'.

Li(cty +la) = (cly + l2)(x) = cl1(x) + La(x) = cL (£1) + L(£2).

And also
ILx|l = sup [L(€)] = sup [€(x)] < sup [[€][ [lx]| = [lx]] .
lll=1 llll=1 lII=1
In fact, we have ||L¢|| = ||x|. To see this, consider the one-dimensional subspace Y = Rx

and the functional s : Y — R defined by s(Ax) = A||x|| for some A # 0. Then by the Hahn-
Banach theorem, there exists a bounded linear functional s’ : X — R such that s’|y = s with
IIs’llx = lIslly. Then s € X" and

Ll = |Le ()] = |s"(o)| = llx]] -

Hence ||Lc|| = [lx]|.

Remark

Another important observation from the above example is that ||x|| = supjg=1 [£(x)].

Proposition 2.43

If X is a finite-dimensional Banach space, then X is reflexive.

Proof. Let X be a finite-dimensional Banach space. Then X is isomorphic to R"” for some
n € N. Since the dual of R” is also R”, we have X’ = X. Thus X” = X’ = X. Hence X is

reflexive. u

Example

Consider the space C[-1, 1] with || f|| = supye(-1,17 |f(x)|. Then C[-1,1] is a Banach space,
but not reflexive. Suppose C[—1,1] is reflexive. Write (C[-1,1])” = C[-1,1]. Then the
mapping L — L, is an isomorphism, where L : (C[-1,1])) - R, L € (C[-1,1])". Then,
forall £ € C[-1,1], there exists an x € C[-1,1] and L, € C[-1,1]” such that

ILxll = 1, and |I£]| = Lx(0),
Ix[l =1,  and ||€]| = €(x).

Now consider the functional

0 1
() = / s(ods - /0 g (x)dx.

52



Clearly € is a bounded linear functional on C[-1, 1].
0 1
1€(g)l < /1 g (x)| dx + ; g (x)| dx < 2 Supl] lg()| =2]lgll-

xe[-1,

Thus ||€|| < 2. In fact, we have ||{|| = 2 by considering the continuous functions

ge(x) = —-Z, x €[-€€],

Then ||gell =1and £(ge) =2—-€ > 2as e — 0.
However, if f € C[-1,1] has ||f|| = 1, then there exists an interval I C [-1,1] with
u(I) > 0 such that sup; | f| <1 -6, where 6 > 0. Then

6(f)] = ' /[_1’0]_If<x)dx+ /[_Lowf(x)dx— /[o,m,f(")dx’ /[O’le(x)dx
< u([=1,0] = I) + u([-1,0] A 1)(1 = 6) + ([0, 1] N I)(1 = 6) + u([0.1] - 1)

=2-ou(l).

This contradicts the fact that there is an x € C[—1, 1] such that ||x|| = 1 and ||f|| = £(x). Thus
C[-1, 1] is not reflexive.

Theorem 2.44
Let X be a Banach space. If X’ is separable, then X is also separable.

Proof. By the assumption, let {£,} C X’ be a countable dense subset. By definition, since
1€a]l = supy;=1 [€n(2)], for each n € N, we can find a z, € X such that ||z,]| = 1 and |{,,(z,)| >
L1l

Now we claim that Y = span {z,} is dense in X. Suppose not. Then thereisanx € X \ Y.
Consider the space W = {cx +y | c € R, y € Y}. Define a linear functional ¢(v) = cf(x) # 0
for v = cx + y with ¢ # 0 on W. By the Hahn-Banach theorem, we can extend ¢ to X. For
such £ on X, we have £(z,) = 0 for all n since z,, € Y. Assume without loss of generality that
II€]] = 1 and ||¢, — £]| < € by the density of {¢,} in X’. Hence

6all Z NI€I = 11€n = €Il = 1 - €.
On the other hand,
1€all < 2160(20)| = 216:(20) = €(zn)| < 2116, = L]l |24l < 2€.

This implies that 1 < 3e. Picking € < 1/3 leads to a contradiction. Hence Y is dense in X.
Finally, write X = Y = {22/1:1 Ak | M>1,a € ]R} = {Zﬁ’il ik ! M>1,a € Q}. Thus
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X is separable. n

Theorem 2.45

Let X be a reflexive Banach space. If Y C X is a closed subspace, then Y is reflexive.

Proof. Fix a bounded lineal functional L : Y/ — R. We want to show that there exists a
unique z € Y such that L(¢) = L,(£) = £(z) for all £ € Y’. Suppose ¢ : X — R is a bounded
linear functional on X. Consider its restriction on Y, £|y. Note that ||£|y|| < ||€]].

Now for L, we cna extend by Hahn-Banach theoremto Ly : X’ > R. Forme X', m : X —
R, consider its restriction on Y, m|y. Then Lo(m) = L(m|y). We check that L is linear and
bounded. For c € Rand m,{ € X’,

Lo(cm + ) = L((cm + €)|y) = L(cmly + {|y) = cL(ml|y) + L({ly) = cLo(m) + Lo(?).

And also
|Lo(m)| = [L(m|y)| < IL|[|lm]y]l < |[L]| llm]l. = |[Loll < |IL]|.

Thus Ly is a bounded linear functional on X’. We now use the reflexivity of X. Since X” = X,
there exists a z € X such that Lo(m) = L,(m) for all m € X’.

We claim that z € Y. Suppose not. Then there exists a bounded linear functional m :
{cz+y|ceR,yeY} — R such that m(z) # 0 and m(y) = 0 for all y € Y. Extend m to
mo : X — R by Hahn-Banach theorem. Then

Lo(mo) = L(moly) = L(0) =0 # mo(z) = Lo(myo),

which is absurd. Hence z € Y and we see that L(m) = m(z) for all m € Y’. Take m € Y’ and
its extension mo € X'. If mo,m; € X" are two extensions of m, then Lo(mo) = Lo(m;) and
hence L(m) = Lo(mgo) = mo(z) = m(z). Thus the extension is unique. We conclude that Y is

a reflexive Banach space. [

Definition 2.46
Let X be a Banach space and Y C X be a closed subset. Then the quotient space X/Y is
defined as

XY ={x+Y|xeX}

with the norm ||x +Y|| = inf ey |[x + y||.

Remark

In the quotient space X /Y, two elements x1 + Y and xo +Y are equal if x1 —x9 €Y.

Remark
Forany T € B(X,Y), consider its kernel ker(T) C X. By proposition 2.9, ker(T) is closed, and
thus X [ker(T) is well-defined.
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Proposition 2.47
Let T € B(X,Y) be a bounded linear operator. Define Ty : X /ker(T) —» Y by Ty : x + ker(T) +—
Tx. Then Ty is a bounded linear operator with ||Ty|| = ||T||.

Proof. We first check that T} is well-defined. Suppose x1 +Y = xo +Y. Then x1 — x9 € ker(T)
and hence T (x; — xg) = 0. Thus Tx; = Txg and

To(xl + ker(T)) =Tx; =Txqg = T()(Xz + ker(T)).

Next, Ty is clearly linear. For x + ker(7T) € X /ker(T) and any € > 0, there exists xo € X such
that ||x + xo|| < ||x + ker(T)|| + € by the definition of the norm on the quotient space. Then

ITo(x + ker(T))|| = [ITx[| = IT (x + x0) | < IT| [lx + xoll < T[] ([lx + ker(T)|| + €).

Since € is arbitrary, we have ||To(x + ker(T))|| < ||T|| ||x + ker(T)||. This shows that Ty is
bounded and ||Tp|| < ||T||. Conversely, notice that 0 € ker(T"). Thus

I7x|| = [[To(x + ker(T))|| < [|Tol| [lx + ker(T)| < [|Toll [lx + Ol = I Toll [|x]| -

Hence ||T|| < ||To||. We conclude that ||Tp|| = ||T]|. [

Remark
Ty is injective and Ty(X /ker(T)) = T(X).

Definition 2.48
Let X,Y be two Banach spaces and T € B(X,Y). The transpose of T is defined asT' : Y’ — X’
byT' : {+— (T € X'.

Remark
T¢ = ¢T.

Proposition 2.49
Suppose T € B(X,Y). Then T’ : Y — X’ is a bounded linear operator with ||T’|| = ||T||.

Proof. The linearity of T’ is trivial. By definition,

I7’Il = sup ||IT°¢|| = sup ||(T| = sup sup |[£(Tx)] < sup sup NI Al = 1T
lell=1 lel=1 lell=1 flxll=1 lel1=1 flxll=1

Conversely,

IT|l = sup [|Tx|| = sup sup |£(Tx)| < sup sup [[€T|||x]| = sup el =11l -
S lell=1 llell=1 lell=1 flxll=1 llel=1

Hence ||T’|| = ||T]|. [
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Definition 2.50
Let T € B(X,Y). The orthogonal complement of T(X) is defined as

T(X)"={teY |t(Tx)=0forall x € X}.

Proposition 2.51
Let T € B(X,Y). Then ker(T") = T(X)*.

Proof. Let { € T(X)*. Then for all x € X,
Ttx = ((Tx) = 0.

Hence ¢ € ker(7T’) and T(X)* c ker(T”). Conversely, if £ € ker(7”), then T’¢ = 0 and
((Tx)=Tt(x) =0

for all x € X. Thus ¢ € T(X)* and ker(7’) c T(X)*. We conclude that ker(7") =T(X)*. =

2.5. Hahn-Banach Separation Theorem

Definition 2.52

An affine hyperplane in a vector space X is a set of the form
H={xeX| f(x)=a}

where f is a linear functional on X and a € R. We denote the affine hyperplane by H(f, @).

Remark

The linear functional f need not be continuous.

Proposition 2.53
The hyperplane H(f, a) is closed if and only if f is continuous.

Proof. Suppose first that f is continuous. Clearly {’} ¢ Ris closed. It follows that f~!({a}) =
H(f,a) is closed.

Conversely, assume that H(f, @) is closed. If H(f,a) = X, then f = 0 and is continuous.
If not, then H(f,a)¢ # @. Let xo € H(f,a)¢ and f(x9) # a. Without loss of generality,
assume that f(xg) < a.

Fix r > 0 such that B,(x¢) ¢ H(f,a)¢. We claim that f(x) < a for all x € B,(x(). Suppose
not. Then there is x; € B,(xp) such that f(x;) > @. We have that the segment

{x;eX|x;=(1—-0)xp+1tx1,t € [0,1]}
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lies in B, (xo) and f(x;) # a for all ¢ € [0, 1]. However, it is clear that

. fx) —a
f(x1) = f(xo)

a contradiction. Thus f(x) < a for all x € B, (xg). It follows that f(xo+rz) < a for all ||z|| < 1.
Then

€[0,1] and f(x;) = (1-1)f(x0) +1f(x1) = @,

11l = sup 7)1 < > (o — flxo)) < o

llzll<1

Hence f is continuous. [

Definition 2.54
Let A, B C X be two subsets of X. We say that a hyperplane F(f, a) weakly separates A and
Bif
sup f(x) < a <inf f(x).
X€B

X€eA

Definition 2.55
Let A, B C X be two subsets of X. We say that a hyperplane F(f, @) strictly separates A and
Bif

ilrjf\)f(X) Sa—e<a+es)icre1£f(x)

for some € > 0.

Lemma 2.56

Let C C X be an open convex set containing 0. For every x € X, set
) 1
p(x)=infia>0|—xeC;.
a

Then
(@) p(Ax) =Ap(x) forall A > 0and x € X,
@) p(x+y)<px)+p(y) forall x,y € X,
(c) thereis M < oo such that 0 < p(x) < M ||x|| for all x € X,
d C={xeX|pkx) <1}
Proof. For (c), let r > 0 be such that B,(0) c C. x € B (0) implies that rx/||x|| € B-(0) c C.

Thus 1
p(x) <~ x|

for all x € X.
For (d), let x € C. Since C is open, there is § > 0 such that (1 + 6)x € C. Thus

<1

<
p(x)_1+5
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Conversely, suppose p(x) < 1. There is a € (0, 1) such that %x € C. Thenx = a(x/a) + (1 -
a) - 0 € C by convexity of C. We conclude that C = {x € X | p(x) < 1}.

(a) 1s obvious. For (b), let x, y € X be given. For € > 0, from the definition of p, m eC
and —=— € C. Now for ¢ € [0, 1],

p(y)+e
X y

—  t(1-f)—2—eC

p(x) +e p(y) +e
by the convexity of C. Thus

= p(x) + € €[0,1] = Xy eC
px)+p(y)+2¢ 7 p(x) + p(y) + 2¢
Hence
p(x+y) < p(x)+p(y) +2€

for all € > 0. Thus p(x +y) < p(x) + p(y). [ ]

Theorem 2.57 (Hahn-Banach Separation Theorem I)
Let A, B C X be two non-empty convex sets such that AN B = @. If one of the sets is open, there
is a closed hyperplane H(f, @) separating A and B.

Proof. We first prove the case where A = {xo} is a singleton and B is open. By translation we
may assume without loss of generality that B contains 0. Consider the set G = span({x¢}).

Define the functional g on G by
g(txo) =1

for r € R. Apply lemma 2.56 to the open convex set B to obtain the corresponding p. We claim
that g(x) < p(x) for all x € G.
Indeed, let x = txg. If > 0, then g(x) = and

p(x) = p(txo) = 1p(xo) 21 = g(x).

If r <0, then g(x) =t < 0 and by definition p(x) > 0. We conclude that g(x) < p(x) for all
xeaq.

Now we can extend g to f on X with f(x) < p(x) for all x € X. In particular, f(xg) = 1
and is bounded and thus continuous. f(x) < 1 for every x € B by lemma 2.56 (d).

Now we turn back to the general case. Set C = {x —y | x € A,y € B}. We check that C is

an convex set. Indeed, if xg — yg,x1 — y1 € C, then
1(xo —yo) + (L =1)(x1 = y1) = (txo + (L = 1)x1) — (tyo + (1 —1)y1) € C

since txg + (1 —t)x; € A and tyg + (1 — t)y; € B by convexity of A and B. In fact, C is open
sicne we may write C = U,cp(A —y) and A — y is open for every y € B. Also, 0 € C since

A N B = @. Now apply the previous result to C and {0} to obtain a linear functional f on X
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such that f(x) <0 for all x € C. Then f(x) < f(y) forallx € A and y € B. Then

sup f(x) < a <inf f(y)
yeB

xeA

for some a. H(f, @) is the desired separating hyperplane. [

Theorem 2.58 (Hahn-Banach Separation Theorem II)
Let A, B C X be two non-empty convex sets such that AN B = @. Assume that A is closed and
B is compact. Then there is a a closed hyperplane H( f, «) strictly separating A and B.

Proof. Set C = {x—y|x € A,y € B}. Then C is convex by the proof of theorem 2.57. Thus
there is some r > 0 and B,(0)NC = @. By theorem 2.57, there is a closed hyperplane H( f, @)
that weakly separates B,(0) and C. There is a bounded linear functional f such that

fx=y) < f(rz)

forall x € A, y € B and z € B1(0). Then f(x —y) < —r || f|. Pick e = 5 || f|| > 0.

Jx)+e< f(y)—e€
for any x € A and y € B. Thus

sup f(x) <a—e<a+e<inf f(y)
X€A yeB

for some a and we see that H(f, @) strictly separates A and B. [

Corollary 2.59
Let M C X be a proper subspace such that M # X. Then there is some non-zero f € X’ such
that f(x) =0 forall x € M.

Proof. Fix xo € X \ M. By theorem 2.58, there is a closed hyperplane H(f, @) such that

supf(x) <a—-—e<a+e< f(x)
xeM

It follows that f(x) = O for all x € M or otherwise Ax € M and Af(x) < f(xo) for every A,
which is absurd. u

2.6. Weak and Weak* Convergence

Definition 2.60
Let (X, ||-||) be a normed space. A sequence {x,} in X is said to converge weakly to x € X,

denoted by x, N x, if for every L € X', L(x,) — L(x) as n — oo.
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Remark

Strong convergence implies weak convergence. If x, — x,
|L(xn) = L(xX)| = [L(xp = x)[ < |IL]| |Ix0 —x]| — O

w . .
as n — oo. Thus x,, — x. However, the converse is not true in general.

Example
Consider (2. Note that (€2)" = (2. For all L € ({2, there exists y € (2 such that L(x) =
Yoy Xnyn. Let x, = e" be the sequence with 1 at the n-th position and 0 elsewhere. Then

Xp — 0 since for every L € (£?),

L(x,) = ) €fyi=yn =0

1

for y € t2. However, ||x,||2 = 1 for every n and thus x, - 0.
Example

Consider X = C([0, 1]) with the supremum norm. Let

nt if0<t<1/n,
xn(t) =92 —nt ifl/n<t<2/n,
0 if2/n<t<1.

Then ||x,|l = 1 and thus x, /~ 0. Instead, we have x, 2 0. Assume not, then we can find

T(xnk)| > 6 > 0. For simplicity, we consider the
case T(x,,) > 0, but the other case is similar. Since T € X, T(xnk)| < ”T”X—>R||‘xﬂk||oo' Let
vk = XK %, Then T(yx) = S, T(xa) = K6 and T(yk) < ITllx—x Ikl This implies
that yx cannot be bounded. Now consider x,, with ni,1 > 2ny. For t € [0,1/nk], x,, (t) = nit.

T € X’ and a subsequence {x,,} such that

K K K
vk =Y mr < Y mfng <1+ ) 2Kk <14 Y ok =g,
k=1 k=1 k=1 k
Fort € [1/nk,1/ng-1],
K K-1 1 K-1
i) = Y () <14+ ) mr <1+ Dime<141+ ) 27 =3
k=1 =1 "K-143 k

On [1/ng, 1/ng_1], we have llyxll < 3. Thus 5K < IITlly_g Ikl < 3[Tllx_g, which is

itmpossible for sufficiently large K. Hence x, 5o

Proposition 2.61
(X, I‘llx) ts @ normed space and x, € X. If ||x,l|x < C for all n € N and L(x,) — L(x) for all
L € AC X', where A is dense in X', then x, Sxin X.
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Proof. Let € > 0 be given. A is dense in X’. For T € X’, there is an L € A such that
IT — L||y g < €. Also, there exists N such that |L(x,) — L(x)| < € for all n > N. Then

T (xn) = T(x)| < [T (xn) = LOxn)| + |L(xn) = LX) + [L(x) = T (x)]
ST = Lilx g (lxallx + llxllx) + L) = L(x)] < 2Ce + €

for all n < N. Since € is arbitrary, x,, — x. [ ]

Definition 2.62
A space X is called a Baire space if for any sequence of open dense subsets {E,}, N,E, is
dense in X.

Theorem 2.63 (Baire Category Theorem)

A complete metric space is a Baire space.

Proof. Let X be a complete metric space and {E,,} be a sequence of open dense subsets in X.
Put E = N, E,. We want to show that any nonempty open set G C X intersects E.

E11is dense in X so G N E; is nonempty. Then there exists x;1 € E1 N G. Note that E1 NG
is open; there exists 1 > 6; > 0 such that Bs,(x1) € E; N G. By shrinking §;, we can have
m C E1 N G. Now since Eg is dense in X, there exists xo € Ea N By, (x1) and also a
1/2 > 69 > 0 such that m C E2 N Bs, (x1). Continue this process, we obtain a sequence
{x,} and ¢,, < 1/n such that m C E,NBs, ,(x4-1).

For every m,n > N, we have x,, € Bs, (x,) C --- C Bs,(xy) and x,, € Bs, (X)) C -+ C
Bs, (xn) by construction. Hence d(x,, x,,) < 26y < 2/N and {x,} is a Cauchy sequence. Since
X is complete, {x,} converges to some x € X. We claim that x € EN G. Clearly x € G. By
construction x,, € m for all m > n. Thus x € Bs, (x,,) C Ey for m > n > N. We see that
x € N,E,. Notice that G is arbitrary, so E is dense in X, proving that X is a Baire space. =

Theorem 2.64 (Uniform Boundedness Principle I)
X is a complete metric space. f, : X — R is continuous for every a € A, where A is an index
set. If for every x € X, there exists M(x) < oo such that

sup | fo (X)| < M(x),

€A

then there exists an open G and a constant C < oo such that

sup | fo(x)] < C

a€A
forall x € G.

Proof. By Baire Category Theorem, X is a Baire space. For each n, let

Fnz{xeX

sup | fo (¥)| < n}

a€A
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We claim that F, is closed and X = U, F,. Indeed, set x; — x € X, where x; € F, for all k.
For any a € A, |f,(xx)| < n for all k and by continuity of f,,

[fa(0)] = lim |fo(xe)] < n.

Hence x € F,, and F, is closed. Next, for any x € X, take N > M(x). Then x € Fy C U, F,.
This shows that X = U, F),.

Finally, observe that F, cannot have empty interiors for all n. Otherwise, @ = X¢ =
(UnF,)¢ = NFS # @ since F¢ are open dense subsets of X, which is absurd. Hence there is
some n such that F,, has nonempty interior, say G C F,. Then sup,c, |fo(x)| <nforallx € G

as desired. ]

Definition 2.65
A function f : X — Ris said to be sub-additive if f(x +y) < f(x) + f(y) forall x,y € X.

Theorem 2.66 (Uniform Boundedness Principle II)

X is a Banach space. @ € Ais an arbitrary index set. f, : X — Rare continuous, sub-additive
and satisfy fo(cx) = |c| fo(x) forall x € X and ¢ € R. If for every x € X, there exists M (x) < oo
such that

sup | fo (x)| < M(x),

a€A

then there exists a constant C < oo such that

sup | fo (x)| < Cllx]ix

aeA

forall x € X.

Proof. By theorem 2.64, there exists an open G and a constant C < oo such that

sup | fo(x)| < C

a€A

for all x € G. The proof will be complete if we can extend G to X. Since G is open, there
exists r > 0 such that B,(z) c G for all z € G. For any x € B,(z), sup,ey |fo(x)| < C and
hence sup,c4 |fo(z +y)| < C for all y € B,(0). Take y with ||y|| < r/2. Then

-2C < fa(y + Z) - fa(z) < fa()’) < fa/(y + Z) + fa(_z) = fa(y + Z) + fcx(Z) <2C.

Hence |f,(y)| < 2C for all y with ||y|| < r/2. Take x € X.

| fa(X)| =

x r2 2 4C
folm=s=lIxll]| = = lIxll | faW)| £ — llx]| .
[|x]| 2 r r r

Thus aC
sup | fo (x)] < — [1x|
a€A r
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for all x € X. [ ]

Corollary 2.67
X is a Banach space. L, € X’ and a € A. If for every x € X, there exists M(x) < oo such that
SUpP,ea |Lo(x)] £ M(x), then there exists a constant C < oo such that sup,c, ||Lq|| < C.

Proof. Apply theorem 2.66 to f,(x) = |L,(x)|. First, L, is linear and the sub-linearity follows
from the triangle inequality. Next, |L,(cx)| = |c| |Ly(x)| for all ¢ € R. Also, L, € X’ implies

that f, is continuous. The conclusion follows from theorem 2.66. [

Corollary 2.68

X is a normed space. x, € X for all @ € A with the property that for every L € X', there is
M(L) < oo such that sup, |L(xy)| < M(L) and (X', ||-||x_R) is @ Banach space. Then there
exists C < oo such that ||x,||xy < C for all a € A.

Proof. Apply the theorem 2.66 to f, (L) = |L(x,)|. First, for L,T € X’,
Ja(L+T) = |L(xa) + T(xa)| < [L(x0)| + |T(x0)| = fo(L) + fo(T).
Next, for ¢ € R,

Ja(cL) = |cL(xo)| = |c| [L(xo)| = |c| fa(L).

Finally, to verify that f, is continuous, note that for L,, —» L in X’,

| fo(Ln) = fo(L)| = |Lu(xq) = L(xa)| < ||ILn = Ll xR [Xallx — 0

for each a € A. The conclusion follows from theorem 2.66. [ ]

Corollary 2.69
X is a normed space and x, € X with x, — x in X. Then there exists C < oo such that
llxx|lx < C for all n.

Proof. This is a direct consequence of corollary 2.68 with A = IN. [

Proposition 2.70
Let f, € LP(X,u) and 1 < p < 0. Then f, — f € LV if

forall g € LV (X, 1) and some f in LP where p’ is the conjugate exponent of p.

Proof. By the assumption and Riesz representation theorem, for every T € (L?)’, there

exists a unique g € £ such that
1) = [ fsdu = [ fedu=1().

Hence f;, A f. [ |
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Proposition 2.71
fae LP(X, ) and 1 < p < 0. If f, - fin LP, then f, is bounded and

1/ull, < liminf [[£,]], .
n—o0

Proof. Consider the function

A7
8= ~.
[¥al
Note that S
lgll?, = / ol du= [ g -
P K

Hence g € L7 with lgll, = 1. Also notice that |g| = |F|PIP’ /||f||z/pl =|f]Pt /||f||§_1. By the

weak convergence and Riesz representation theorem,

£ | . »
171, = [ L= [ 17eldu = lim [ gl du < limint 150, gl = liminf 150,

1
115

by the Holder inequality. Note that by corollary 2.69, f,, is bounded uniformly in 7. [

Proposition 2.72
1<p<wandl/p+1/p’ =1. Suppose f, — fin LP and g, — g in LY. Then

Proof. By the Holder inequality,
' [ s~ [ rean

Note that by proposition 2.71, f, converges to f strongly and hence weakly. It follows that

< +

[ iten-a+| [ (fn—f)gd,u‘

< | fallp 11gn = &l + 11w = £, 11l -

| f|| is bounded by some C < oo. Since g, converges to g and f, converges to f in their
respective norms, the right hand side of the inequality converges to 0 as n — oo. [

Remark

If we loosen the condition to f, A fin LP and g, N gin LV, then the conclusion fails.

Example
Suppose p = p’ = 2 and f,(x) = \2/n sin(nx) for x € [0, x]. Then f, € L2([0, x]) and

/8 2 /8
/ fnde = —/ sin?(nx)dx = 1.
0 T Jo

To see that f;, N 0, let g € L2([0,x]). For every € > 0, there is a step function ¢ such that

llg — &lls < €. Note that every step function is a finite linear combination of characteristic func-
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tions of intervals. Hence it suffices to show that f, x; can be arbitrary small for n sufficiently

large. On every interval,

n/n )
< / sin(nx)dx = — — 0
0 n

/ sin(nx)dx
I

asn — oo. Thus f, 5 0in L2([0, n1]). However, f, does not converge to 0 strongly in L2([0, ])
since || fulls = 1 # 0 for all n.

Proposition 2.73
1< p<oo Let f, € LP(X, u) be a bounded sequence of functions. Then f, N fin L? ifand

only if
lim | f,du= / fdu
n—o00 A A

for all A € A when p =1 and for A with finite measure when p > 1.

Proof.

fngf — /fngdye/fgdyforallgel:”'

= /fnsdy — /fsd,u for all simple s € L7’
A A

= /Afnd,u=/anAdu%/fXAdu=/Afdu

for A € A such that y4 € L. If p = 1, then A can be taken to be any A € A; if p > 1, then

A must have finite measure. ]

Proposition 2.74
1< p<co. Let f, € LP(X, p) be a sequence with ||f,|l, < M and f, — f pointwise a.e. Then

fo 2> fin LP.
Proof. Since || full, < M,

/|f|”d,u=/liminf|fn|pd,usliminf/|fn|pd,u:Mp
n—oo n—oo

by Fatou’s lemma. Hence f € LP. It remains to show that the convergence is weak. By

proposition 2.73, it is equivalent to show that
tim [ fudu= [ fau

for all A € A with u(A) < . Indeed, by Egorov’s theorem, for every ¢ > 0, there exists
Fe c A with u(A - F,) < € and f, — f uniformly on F.. Furthermore, by proposition 1.33,

/ o= fIP du < €
A-F,
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since f,, f € L and so does |f,, — f|’. Also, let E = {x € A— F. | |f, — f| > 1}. Then for n
sufficiently large,

/Alfn—fld,uS/FE Ifn—fldﬂ+/A_F€ o= fldu
S/Aedﬂ+/A_F€_E|fn—f|dﬂ+/EIfn—fldu

Seu<A>+y<A—Fe>+/ o= fI7 du < en(A) + e + €.

€

Hence f, A f. ]

Remark

The proposition fails for p = 1. Consider f, = nx[o,1/n]- Then ||full; = 1 and f, — 0 pointwise

/Olfn(x)dx:1¢0:‘/010dx.

Thus f, does not converge weakly to 0 in L.

a.e. However,

Theorem 2.75 (Radon-Riesz)
1< p <co. Then fy — fin LP if and only if lim,— || full, = I f1l, and fy 5 fin LP.

Proof. Suppose f, — f in L”. Then the strong convergence immediately implies the weak
convergence. Also, note that || full, < ||f. — fll, + | /]|, and thus

[1£all, = A1, < 1 f = £1l, = 0

by the strong convergence. Conversely, suppose that || f,||, — [[fIl, and f, N fin LP,
Assume p > 2. For any y € R, notice that |1 + y|’ > 1+ py +c|y|” for some ¢ € (0,1). Let
E={xeX| f(x)=0}and apply y = (f, — f)/f on E€. Then on E€,

p21+p(f";f)+c

p

Jn

f

fn_f
f

Thus
|ful? 2 | fIP + p(fu = £) I f1P  sgn(f) +c | f = fIF.

Rearranging the inequality and integrating both sides on E€ gives
e [An=sraus [ a0 =107 du=p [ 1777 sen(H(G -

Note that as shown in the proof of proposition 2.71, | f|?~* sgn(f) € L. By the assumptions
we see that

[ V= f1Pdu—0
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asn — oco. On E, we have f = 0 and

[1g= s du= [ 11 du—0

asn — oo. Hence f, — f in L”.

Assume 1 < p < 2. Then we have the same inequality for |z| > 1, i.e.,
[1+zP >1+plz|+clz|f

Also, for |z] < 1,
[1+zP -1-pz
2

Z
is strictly positive. Now let £, = {x € X | | f,(x) — f(x)| < |f(x)|}. Then by applying the same

argument above on E;,, we have

1
[un=sraus [ 1np-1ovda-2 [ 170 sen(n) (-
ES C JES C JES
asn — oo, On E,, replacing z by (f, — 1)/ f,

p fn _

In >1+p 7

f

_ 2
f +c’(fnf f) = Ll 2117+ (=D 1P sgn(f) + ¢ N fu = FIP 11772

for some ¢’ > 0. Thus
_ 1 _
/ o= FE AP 2 d < = / Al = 117 du— 2 / F1P L sgn () (fo — fd.
E, ¢ JE, ¢ JE,
Adding up the two inequalities, we have
[ A= praus [ 1= U2 dn -0

as n — oo by the assumptions. Note that on E,,, |f| > |f, — f| and

1/2
_ _ -1 _ 2 -2
/E L /E 1= A1 dus( /E A= SR dy) ( /Enlfl”dﬂ)

1/2
< (/E |fu — fI? Ifl”'Qdu) ||f||§/2 — 0.

1/2

Hence f,;, — f in L”. We conclude that f, — f strongly in £ if and only if f, 5 fin LP
and || full, = I /1], L]

Remark
Radon-Riesz theorem fails for p = 1. Consider f,(x) = 1 + sin(nx) on X = [-n,n]. Then for
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every g € L%,
/(fn —1)gdu < / sin(nx)gduy — 0

by the step function approximation argument. Also, | f,|l; = 27 for all n and hence converges

to ||1||; = 27. However, f, does not converge to 1in L since

Fis Fis o
/ |fn—1|du = / |sin(nx)| du = 211/2 sin(nx)dx = 2
- - 0

/s /s

for all n.

Definition 2.76
Let X be a Banach space. A subset K C X is weakly sequentially compact if every sequence

{xn} C K has a subsequence {xnk} such that x,, Sxek.

Proposition 2.77
Let X be a Banach space. If K C X is weakly sequentially compact, then K is bounded.

Proof. Suppose K is not bounded. Then we can choose an unbounded sequence {x,} C K
such that ||x,|| = n for all n. By the weakly sequential compactness of K, there exists a

w
weaky convergent subsequence {xnk} such that x,, — x € K and also ||xnk|| > ny. However,

by corollary 2.69, xnk” < C for some C < oo, which is absurd. Hence K is bounded. [

Theorem 2.78 (Kakutani)
Let X be a reflexive Banach space. Then the closed unit ball

B={xeX||x]|<1}

s weakly sequentially compact.

Proof. We consider first the case when X is separable. Reflexivity gives that X” = X and
hence X” is separable. By theorem 2.44, X’ is separable, and there exists a countable dense
subset {m J-} C X’. Given x,, € X with ||x,|| £ 1, we need to show that there exists a sub-
sequence X, “ x € B. Since m j(x,) is a bounded sequence for each j, we can extract a

subsequence x,, such that m; (x,,kj) — A(my,) as j — oo, where
Almy) = lim m; ().

We claim that for all m € X', m(x,,) — A(m) as k — co. Indeed, for any m € X’, we can

find a sequence {m;} such that m; — m as j — co. Then

|m(xnk) - m(xn1)| < |m(xnk) - mj(xnk)| + |mj(xnk) - mj(xnl)| + |mj(xn1) - m(xnl)l
<l = [ | + o Gran ) = Gra )] + [l = | o |

< 2l = mjl| + |m; Con) = m; Cen)| = 0
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as k,l — co. Hence the sequence {m (xnk)} is Cauchy and A is well-defined. Notice that A is
also bounded:

|A(m)| = lim | (x,)] < Jlim {|m|| e = llmll -

We see that ||A|| < 1. Because A is bounded, it is continuous and thus m(x,,) — m(x) for
some x € X by the reflexivity of X. Such x belongs to B since ||x|| = ||A|| < 1. Thus B is weakly
sequentially compact.

For the general case where X is not separable, consider the sequence {x,} < B. Let
Y = {ZnNzl ApXy, ’ NeN,a, € IR} be the closed subspace of X spanned by {x,}. Since X is
reflexive, Y is also reflexive by theorem 2.45. Note that Y is also separable. The established
results above show that there exists a subsequence {xnk} C Y and x € Y such that x,, Yoy
in Y, i.e., for every m € Y’, m(x,,) — m(x). Extend the functionals m € Y’' to £ € X’ by
Hahn-Banach theorem. Then {|y = m € Y’ implies that {(x,,) = m(x,,) — m(x) = {(x). We
conclude that x,, 2 x € B. Thus B is weakly sequentially compact. [

Example
Let p € (1,00). Then LP (L, n) is reflexive. Then for all {fy} with || full, < 1, there exists a
subsequence fy, 5 fin LP for some f with ||f|, < 1. By Riesz representation theorem, this

is equivalent to saying that for every g € L9(Q, u),

]}ggo/fnkgdu=/fgdu,

where g is the conjugate exponent of p.

Definition 2.79
Let M be a Banach space. A sequence of bounded linear functionals {x,} C M’ converges

weakly” to x if for all m € M, x,,(m) — x(m) as n — co. We denote the convergence by x, 5

Remark

Since the canonical mapping M — M" is always injective, w* convergence is weaker than
weak convergence. Allowing for the abuse of notation, we can write M C M”. Consider now
a sequence x, € M’ with x, % xin M’. Then {(x,) — C(x) for any £ € M”. This implies that
x,(m) — x(m) for all m € M and hence x, LS x in M’. Thus weak convergence implies w*
convergence.

The converse is true if M is reflexive. However, once we remove the reflexivity condition, the
converse fails. Let X be the space of finite signed measures on [—1, 1]. We have already seen
in theorem 2.39 that C([-1,1])" = X. Consider the measures v,(A) = nu(AN[-1/n,1/n])/2.
We claim that v, L 00, where 8 is the Dirac measure at 0. Indeed, for any f € C([-1,1]),

the corresponding functional €, for v, is given by

n 1/n

1
wp= [ riv=5 [ rwas— 50 =60,
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where { is the functional defined as €y : f +— f(0). Thus ¢, ¥ {o.

Houwever, ¢, is not weakly convergent to {y. To see this, consider the evaluation functional
Loy : € = (¢0)({0}), where ¢ is the isometric isomorphism from C([-1,1])" to X. Then
Loy € X’ = M". However,

Loy (£n) = va({0}) =0 /> 1 =60({0}) = Loy (o).
Thus v, does not converge weakly to 6.

Definition 2.80
Let M be a Banach space. A subset K C M’ is weakly* sequentially compact if every

sequence {x,} C K has a subsequence {xnk} such that x,, S xek.

Theorem 2.81 (Banach-Alaoglu)
Let M be a separable Banach space. Then the closed unit ball

B={xeM||x| <1}

s weakly* sequentially compact.

Proof. This proof is similar to the proof of Kakutani theorem. Let {x,} C B be a sequence.
By the separability of M, for every m € M, there is a sequence {m j} C M such that m; — m
as j — oco. For any fixed j, |x,,(m J-)| < ||m JH is a bounded sequence. Hence we can extract a
subsequence x,, such that

Xn(mj) — A(mj) as k — oo

for some A(m;) € R, with A(m) = limg_ x,, (m). A is a bounded linear functional on M

since it is clearly linear and
|A(m)| = kh—I};lo |xnk(m)| < kh_IEo”xnkH lml| = ||mll,

showing that ||A|| < 1. We claim that A is well-defined, i.e., the limit exists. Indeed, for any
m € M, we can find a sequence {mj} such that m; — m as j — oco. Then

|xnk (m) - Xy (m)| < |xnk (m) — Xng (m1)| + |xnk (mj) _xnl(mj)| + |xnl(mj) _xnl(m)|
< ||xnk _xm” “m” + |xl’lk (m]) — Xny (m])| + ||xnk _xm” ||m||

< 2t = |+ b ) = 22, )] = 0

as k,I — oo. Hence the sequence {x,,k (m)} is Cauchy and A is well-defined. Because of the

boundedness of A, it is continuous and thus x,, (m) — x(m) for some x € M’. Since ||x,,k || <1,

we have |[x|| < 1. Thus x € B and x,, Y, xin M’. We conclude that B is weakly* sequentially

compact. -
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Definition 2.82
Let X be a normed space. A C B C X" is weakly* dense in B if for every f € B, there exists

a sequence { f,} C A such that f, N fin X’'. We also say that B is the weak* closure of A.

Theorem 2.83 (Goldstine)

Let X be a Banach space and B be the closed unit ball in X. Consider the canonical mapping
J:X > X" given by J : x — (f — f(x)). Then J(B) is weakly* dense in the closed unit ball
in X”.

Proof. We begin by showing the following claim: for all £ € B”, the closed unit ball in X”,
fi,..sfu € X/, and § > 0, there exists an x € (1 + §)B such that fi(x) = £(f;) for all
i=1,...,n. To show this, consider the mapping ® : X — R" given by

O(x) = (f1(x),. ... fu(x)).

Then @ is a surjective bounded linear mapping. Hence we can find x € X such that f;(x) =
£(f) foralli=1,...,n. Now, define Y = (', ker(f;) = ker(®). Everyz € (x+Y) N (1+)B
satisfies that z € (1 + §)B and f;(z) = fi(x) for alli = 1,...,n. The claim follows once we
show that (x+Y)N (1+6)B # @.

Suppose not. Then d(x,Y) > 1+ 6. Clearly, Y is closed by proposition 2.9 and {x} is
compact. By Hahn-Banach seperation theorem, we can find f € X’ such that f|y = 0,
I/l =1, and f(x) > 1+6. f € span{fi,.... i} and 1+ 6 < f(x) = £(f) < IfIIIEN < 1,
which is absurd.

Now, fix ¢ € B”, f1,..., fs € X', and € > 0. Consider the weak* neighborhood of ¢ given
by

U={{eX"[I{(f) -l <ei=1,...,n}.

This is the base of the weak™* topology on x”. The density of J(B) in B” follows once we show
that U N J(B) # @. Our claim above asserts that since J(B) Cc B”, for any § > 0, there exists
x € (1 + 6)B such that J(x) € (1+ 6)J(B) N U. Rescaling gives (1 + 6)"1J(x) € J(B). We
proceed to show that for sufficiently small §, we also have (1 + §)~1U.

0

S| =109 = £ 500] = s LA,

1

£ -1

Now pick § such that 6§ maxi<;<, || fi|]| < €. Since ||x|| <1+ 6,

o

0
= 1) < 7 il Ikl < Smax ] < e.

Thus (1+6)~1J(x) € U and we conclude that J(B) N U # @. This shows that J(B) is weakly*
dense in B”. [

Theorem 2.84 (Milman-Pettis)

Every uniformly convex Banach space is reflexive.
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Proof. Let X be a uniformly convex Banach space and ¢ € X”. We need to show that there
exists a unique x € X such that £ = J(x), where J is the canonical mapping from X to
X"”. Without loss of generality, we can assume that ||£|| = 1. The injectivity of J gives the
uniqueness of x. It remains to show the existence of x.

Consider the closed unit ball B in X. We first show that J(B) is closed in X”. Indeed, if
¢y € J(B) is a sequence converging to ¢ € X”, then there exists a sequence {z,} C B such
that ||&n — &l = 1 (zm) = J(z0) |l = |lzm — zull and z, is Cauchy. By the completeness of X,
zn — z € X. Take ¢ = J(z) and using the fact that J is isometric, we deduce that J(B)
is closed in X”. It now suffices to show that for any € > 0, there exists x € B such that
€ —=J@)l <e.

Now, fix € > 0 and by the uniform convexity of X, there is § > 0 such that ||(x + y)/2| <
1-6forall x,y € Bwith ||x — y|| > €. Choose f € X’ such that ||f|| =1and é(f) =1 -6/2.
Set

V={neX”|In(f)-€(f)l<o/2}.
By the Goldstine theorem, J(B) is weakly* dense in the closed unit ball in X”. Hence V N
J(B) # @ and there is x € B such that J(x) € V. We claim that this x is the desired choice.

Suppose not, i.e., ||& — J(x)|| > €. Then & € (J(x) + eB”)¢, where B” is the closed unit ball

in X”. (J(x) + eB”)¢ is also a neighborhood of ¢ in weakly* topology. Using the Goldstine

theorem again, we have that V N (J(x) + eB”)° N J(B) # @. This means that there is some
y € B such that J(y) € VN (J(x) + eB”)¢. Then we obtain that

T (f) =€)l < 6/2and |J(x)(f) = &(f)] < /2.

Hence

26(f) <IN +IW(f) +6 < lx+yll +6.
Recall that £(f) > 1 —6/2. Thus

+
2-5<lx+y+6 = H%Hn—a.

This implies that [|x — y|| < € by the uniform convexity of X. This is contradicting to our

assumption. Hence we conclude that £ lies in J(B) and that X is reflexive. [

Corollary 2.85
LP(Q, u) is reflexive for any 1 < p < oo.

Proof. This is a direct consequence of the Clarkson theorem and Milman-Pettis theorem.
Since for every 1 < p < oo, LP(Q, u) 1s uniformly convex, and every uniformly convex Banach

space is reflexive, we conclude that £7(Q, u) is reflexive. [

Remark

This corollary can also be inferred from the Riesz representation theorem twice.
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Remark
Let X, Y be Banach spaces and B(X,Y) be the space of bounded linear operators from X to Y.
Consider the following topologies on B(X,Y):

® The uniform topology on B(X,Y) is the topology induced by the uniform norm:

mllpxy) = sup [lm(x)lly.
lelx=<1

This is the coarest among the three topologies.

* The strong topology on B(X,Y) is the topology generated by the collection of sets:
{Bre(T) ={S € B(X,Y) | ISx - Tx|| <€} |€>0,x € X,T € B(X,Y)}.

This is the coarest topology that makes the evaluation map m +— m(x) continuous for
all x € X.

® The weak topology on B(X,Y) is the topology generated by the collection

{By xe(T) ={S € B(X,Y) | |y’Sx - y'Tx| <€} | e >0,y €Y, x € X,T € B(X,Y)}.

2.7. Open Mapping Theorem and Closed Graph Theorem

Proposition 2.86
If X is a Baire space and F, is a sequence of closed sets in X such that | J,_, F,, = X, then there

exists some n and a nonempty open set G such that G C F,.

Proof. Let G, = F¢ be open sets in X. Then N>, G, = N2, FS = (U2, Fu) = @. By the
Baire category theorem, at least one of the G, is not dense in X. Thus there is some x € G°
and an open neighborhood U of x such that U () G,, = @. This implies U C F,,. [ |

Theorem 2.87 (Open Mapping Theorem)
Let X and Y be Banach spaces and T : X — Y be a bounded surjective linear map. Then for
any open set U Cc X, T(U) is open inY.

Proof. We first claim that for any open ball B centered at 0 in X, m contains an open
neighborhood of zero in Y. By the surjectivity,Y c T(X) =T(U,nB) = U, T(nB) c U, T(nB).
By proposition 2.86, there is some n such that W contains an interior point, say y, and
some open ball B,(y) C W Then for every z € Y with ||z|]| <r,z—y € B,(-y) C m =
T(nB) and

z=y+(z—y)€y+B,(-y) cT(nB) +T(nB) c T(2nB).

Deviding z by 2n gives that z/2n € T(B) and B, /2,(0) C T(B).
Next, let B be an unit ball. To shorten the notation, denote r/2n by ¢ and B,,2,(0) by
Bs. Let y € Bs and ¢, > 0 be a sequence. Since Bs ¢ T(B), Bs € T(B). Thus for every
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z €Y and e > 0, we can find some x € X such that ||x|| < 67! |z|| and z € B(T(x)). Now
taking z = y and € = c¢1, we can find an x; such that ||x1]| < 6 ||| and ||y — Tx1]| < c1.
Similarly, we can take z = y — Tx; and € = cg to find an xo such ||xg|| < 671 ||y = Tx1]| < 6 teq
and ||y — Tx1 — Txs|| < co. Iductively, we find a sequence {x,} such that ||x,|| < 6 'c,_; and
||y -T(X}, xk)” < c¢,. Now we choose ¢, = 27"¢ for arbitrary ¢ > 0. Then

||y|| I, e ok ||y|| ¢
S—=—+ ) — < ——+4- ) 27 =— 4 —,
an I Z 6 <= 52 s

=1

k=

Hence }, x, converges in X to some x with ||x|| < 1 by making ¢ arbitrarily small. Also,

A

k=1

<c,=2"c—0.

Thus Tx = y and y € T(B), which implies Bs C T(B).

Finally, let U be an open set in X. Then for any y € T(U), there is some x € U such
that y = Tx. Since U is open, there is some € > 0 such that B.(x) ¢ U. By the previous
claim, there is some s > 0 such that B;(0) c T(B1(0)). Multiplying both sides by € gives
Bsc(0) € T(Be(0)). Then

Bye(y) =y + Bye(0) Cy +T(Be(0)) = Tx + T(Be(0)) = T(x + Bc(0)) = T(Be(x)) C T(U).

Thus T(U) is open. This completes the proof. [

Theorem 2.88 (Bounded Inverse Theorem)
Let X and Y be Banach spaces and T : X — Y be a bounded linear map. If T is bijective, then
T-1is bounded.

Proof. By the open mapping theorem, there is » > 0 such that B,(0) c T(B,(0)). For any
y € Y with ||y|| = r/2, there exists x € B1(0) such that y = Tx. For z € Y, write

rz 2
ST Il
Then since = r/2, there is some x € B1(0) such that Zﬁzll =Tx. Thus z = % lz|| Tx,
o= 2 el = 77 < 2l el
Note that ||x|| < 1. We see that ||T‘1|| is bounded by 2/r. [
Remark

The completeness in the open mapping theorem is essential. For counterexample, consider X

as the space of all sequences with finitely many nonzero terms equipped with the supremum
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norm. DefineT : X — X by

T(x1,x9,...) = (x X2 13 )

17?7?7"'

Note that X is not complete since the sequence x™ = (1,1/2,...,1/n,0,0,...) converges to
(1,1/2,...), which does not belong to X. In this case T~ exists but is not bounded.

Definition 2.89

X,Y are Banach spaces. T : X — Y is a bounded linear map. The set
I'(T) ={(x,Tx) e XXY |x € X}
is called the graph of T. We define the norm of x on the graph by
1Ge, TX)[Ir = llxllx + I Tx]ly .

Note that (I'(T), ||||) forms a normed space.

Definition 2.90
Alinear map T : X — Y is called closed if its graph is a closed, i.e., for any sequence x, € X,
ifx, >xeXandTx, > y€Y, thenTx =yand (x,y) € ['(T).

Remark
If T is bounded, it is closed. To see this, note that if x,, — x € X, by the continuity we have
Tx, > TxeY.

Theorem 2.91 (Closed Graph Theorem)
Let X and Y be Banach spaces and T : X — Y be a linear map. If T is closed, then T is
bounded.

Proof. Observe that I'(T) is a Banach space with the norm ||-|| on I'(T'). This follows from
the closedness of T. Now define S : I'(T) — X by S(x,Tx) = x. We claim that S is bounded,
linear and bijective. For linearity, let (x1,7Tx1), (xe,Tx2) € I'(T) and ¢ € R.

S(c(x1,Tx1) + (x9,Tx9)) = S(cx1 + x9,cTx1 +Txg) = cx1 +x9 = ¢S(x1,Tx1) + S(x9,Txg).
For boundedness,
1SCe Ty = llxllx < llxllx + ITxlly = Il (e, Tx) I
Thus ||S|| < 1. For bijectivity, notice that
S(x1,Tx1) = S(x2,Txg) = x1 = S(x1,Tx1) = S(x2,Tx2) = x2.
and for any x € X, (x,Tx) € I'(T) and S(x, Tx) = x. Thus S is bounded, linear and bijective.
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By the bounded inverse theorem, S™! : X — I'(T) is bounded as well. For any x € X,
ITx[ly = 1Ge, Tl = llxlly = [|S75]| = llxllx < Clixllx = llxlly = (C = 1) |Ix]lx

for some constant C < oo. Thus T is bounded. [ ]

Remark

To apply the closed graph theorem, T must be closed in X. If T is only closed in D(T), the
domain of T, then the theorem does not hold. For example, let X =Y = C|a, b] with sup norm
and T : C'la,b] — Cla,b] be the differentiation operator T(f) = f’. Then T is closed in
C'[a, b] while being unbounded. To see this, let f,(x) = sin(nx)/n. Then T(f,) = cos(nx).
Il fullo = O while |T(f)llo = 1. Thus T is not bounded. However, T is closed in C'[a, b]. Let
u, € C'la,b] with u, — uin Cla,b] and Tu, = u,, — v € Cla,b]. Then u € C'[a,b] and
Tu = v. By definition, T is closed in C'[a, b].

Example
Let X = L*(R) and T : {f € L2(R) |Xf(x) € LZ(IR)} — X with T(f) = xf(x). Consider
o= tumer). Then || full = 1/n® — 0 and

I 2n + 1
R R !
n

Thus T is unbounded. If u, — u in L2(R) and T (u,) = xu,(x) — v, then T(u) = xu(x) = v.
Hence T is clsoed in {f e L2(R) | xf(x) e £2(]R)}.

Definition 2.92
Suppose X is a vector space with norms ||-||; and ||-||s. The norms are said to be compatible

if xy, = xin ||-||; and x, — yin |||y implies x = y.

Definition 2.93
Let X be a vector space with norms ||-||; and ||-||s. The norms are said to be equivalent if

there are constants c1,cg > 0 such
c1llxlly < llxllg < ez llxlly

forall x € X.

Proposition 2.94
Suppose X is a vector space with norms ||-||; and ||-||9. If the norms are equivalent, then they

are compatible.

Proof. Suppose ||x, —x||; — 0 and ||x,, — y||s — 0. By the equivalence, ||x — y||; < |[[x —x,||; +
llxn = lly < llx = xally + c2 Ixn = yllg — 0 for some cg > 0. Similarly, [lx — ylly < c1 [lx —x,|; +
lxy, — yllg — O for some c; > 0. Thus x = y. [
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Proposition 2.95
If (X, ||ll;) end (X, ||-|l9) are Banach spaces. Then the norms are equivalent.

Proof. By the closed graph theorem, the identity map 7 : (X, ||-||;) — (X,]|-|l5) is a closed
linear map and thus bounded. Suppose x, — x in ||-||;. Then x,, = Ix, — Ix = x in ||-||, by
the continuity of /. Since / is bounded, ||x||s = |[|[Ix||s < c1 ||x||; for some c1 > 0. Applying the
same argument exchanging the roles of ||-||; and ||| gives ||x||; < c2 ||x||s for some cg > O.
Hence

1
— Ilxlly < llxllz < 1 llxlly
C2

and the norms are equivalent. [

77



3. Hilbert Space

3.1. Cauchy-Schwarz Inequality

Definition 3.1

Let F=RorC. (-, ) : X Xx X — Fis an inner product on X if it satisfies
(@ (cx+y,z)y=c{x,z2)+(y, 2) forall x,y,z € X and c € F.
@®) (x,y)={y, x)forallx,y € X.
(¢c) {(x, x)>0forall x #+0.

Remark

An inner product automatically induces a norm on X by ||| = +/(:, *).

Definition 3.2
A Hilbert space is a complete vector space with an inner product inducing a norm that makes

it a Banach space. We denote the Hilbert space by H.

Remark
If X is a vector space with an inner product but not complete, then X is called a pre-Hilbert

space.

Proposition 3.3 (Cauchy-Schwarz Inequality)
Forall x,y € H,
|Ces Y < lxHIyIl-

Furthermore, equality holds if and only if x and y are linearly dependent.

Proof. If (x, y) = 0, then the inequality is trivial. Otherwise, let r € R. Then

O§<t|<x, D,y y>|x+y>

Wy ey
1(x, ¥
(x, y)

= 1% |lxl|* + 2t‘fR( (x, y>) + Iy = 2 Jlel® + 201G, )]+ IIvI12.

Hence
41, Y= 4l ylI> <0 = [ ) < llxll Iyl -

Note that if the equality holds, then
2 1xl? + 21 [, p) ]+ Y17 = 2 {1l + 2¢ el Iyl + Iyl = @l + lyID? = 0

by taking ¢t = — ||y|| /||x||. But this implies that

|[(x, W

S

x+y=0
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and so x and y are linearly dependent. Conversely, suppose cx = y. Then |{x, y)| = |c]| || y||2
llxll 11y 1l- m

Proposition 3.4 (Parallelogram Law)
Forall x,y € H,
lx + yl1 + llx = ylI* = 21[1x[* + 21[1y]1*.

Proof. Note that

b+ I = Gy, 2+ y) = lall® + 2R (G y) + [P
b= ylI* = o=y x = y) = ll® = 2R (G y) + [P

Adding the two equations gives

e+ Y11+ b = ylI2 = 2 el + 211y

[ |
Proposition 3.5
For all x € H,
x|l = sup [¢x, y).

llyll=1
Proof. By the Cauchy-Schwarz inequality,

y

[, < xlHyll = <x, —>’ < |lxll = sup [{x, y)| < |lx]].
Iyl Iyll=1

Taking y = x/||x|| gives the equality and ||y|| = 1. [

Theorem 3.6 (Completion of Pre-Hilbert Space)
Let (X, (-, -)) be a pre-Hilbert space. Then there exists a Hilbert space H such that X is dense

in Hand (-, -), on H is an extension of (-, -).

Proof. Define (x, y), = lim,_c (xn, yn) for Cauchy sequences {x,},{y,} € X and x,y € X.
We first check that (-, -), is well-defined. Note that

[ns Yn) = Cms V)| < I&ns Yi) = s Yid |+ {Xns Yim) = Kms Y|

< xall lyn = ymll + llxn = Xl {lymll — O

as n,m — oo by the Cauchy-Schwarz inequality. Since FF is complete, the limit exists. To see
that (-, -), is independent of the choice of sequences, suppose {x,ll} , {yi} and {xﬁ} , {y,% } are
two pairs of Cauchy sequences converging to x and y respectively. Then

(e ) = (s v < (s ) = (s v + (s i) = (i v2))|
< |altllysn = vall + s = 2l vzl = o
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Hence (x, y), is well-defined. We now show that (-, -), is indeed an inner product on X. For
the linearity in the first argument, let x, y,z € X, {x.}, {v»}, {za} C X be Cauchy sequences
converging to x, y, z respectively and ¢ € F. Then
<CX +y, Z>* = r}l_)rgo <an + Yn, Zn> = r}l_)noloc <Xna Zn> + <yna Zn>
= ¢ im Cxp, 2) + Hm (yn, 20) = ¢ (6, 20+ (s 2,

For the conjugate symmetry, let x, y € X and {x,} , {y»} C X be Cauchy sequences converging
to x and y respectively. Then

<)C, )’>* = nh—{{olo <xl’l’ yl’l> = nh_)% <xl’l’ yl’l> = nh_)% <}’n, xl’l) = <y’ x>* .

For the positive definiteness, let x € X, x # 0 and {x,} c X be a Cauchy sequence converging
to x. Then

(x, x), = lim {x,, x,) = lim ||Jx,]|> > 0.
n—oo n—oo

Hence (-, -), is an inner product on X and induces a norm on X. Lastly, for every x,y € X,
pick x, = x and y, = y to see that

(x, y). = lim x, y) =, y),

which shows that (-, -), is an extension of (-, -). We conclude that = X forms a Hilbert
space. [ ]

Example
Let X = C([0, 1]) with the inner product

1
<ﬁg>=A'ﬂMguMn

Then X is a pre-Hilbert space. To see this, set f,(x) = x".

1 2 1

+ + -0
2m+1 m+n+1 2n+1

1
I =l = [ = =
0
as m,n — oo, Hence {f,} is Cauchy in X. However, f, converges to

0 x€[0,1)
fx) =
1 x=1,

which is not in X. Hence X is not complete. But by the proposition 1.35, X is dense in £L2([0, 1])
and so X can be completed to a Hilbert space H = L£2([0,1]), which is complete by Riesz-
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Fischer theorem.

Definition 3.7
A set X is called convex if for all x,y € X and t € [0,1], tx+ (1 —t)y € X.

Theorem 3.8
Let K C H be a closed convex set. For x € H, define the distance from x to K as

d(x,K) = inf |lx - y||.
yek

Then there exists a unique z € K such that d(x,K) = ||x — z||.

Proof. Let {y,} C K be a sequence such that ||y, — x| — d(x,K). We claim that {y,} is
Cauchy. Let € > 0 be given. By the parallelogram law,

2 (Il = yall? + Il = yull?) = 1125 = v = vl + llyn = yl?

Rearranging gives

2

1 1 1 Yo+ Y
7 n =yl = 5l =yl + 5 e =yl = [l = 22

< %(d(x, K)+¢€)?+ %(d(x, K)+¢e)?-d(x,K)?

= €2 + 2ed(x, K)

for all m,n > N for some N € N. The inequality follows from the fact that (y, + y,;)/2 € K
by the convexity of K. Since € > 0 is arbitrary, we conclude that {y,} is Cauchy. By the
completeness of H, {y,} converges to some z € H. Since K is closed, z € K. To see the
uniqueness, suppose 71,22 € K are such that ||x — z1|| = ||x — z2|| = d(x,K). Then by the

parallelogram law,

4d(x, K)?* = 2|lx — z1||* + 2 [lx — zall® = llz1 — z2ll® + [12x — 21 — z2f?

+ 2
:||Zl_12||2+4Hx—Zl ZZH :
Hence )
+
lz1 — zol% = 4d(x, K)? — 4Hx _a : ZZH < 4d(x, K)? — 4d(x, K)? = 0
and so 71 = z9. ]
Definition 3.9

Y c H is a closed subspace. The orthogonal complement of Y, denoted by Y+, is defined as
Yt={xeH|{x,y)=0forallyeY}.

Proposition 3.10
Y C ‘H is a closed subspace. Then
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(@) Y+ is a closed subspace.
b H=YoY"
@ (YH'=v.

Proof. For (a), we first check that Y is a subspace. First note that 0 € Y+. Also, if x,z € Y+
and ¢ € FF, then

(ex+z,y)y=c{x, y)+{z,y)=0

for all y € Y. Hence cx + z € Y. This shows that Y+ is a subspace. To see that Y~ is closed,
let {x,} C Y* be a sequnce converging to x. Then for all y € Y,

1<, ¥) = Cony 2 = 1 =20, M < lx = xall [yl = 0

by the Cauchy-Schwarz inequality. Thus (-, y) is a continuous functional on /. Therefore,
(x, y) = lim (x,, y) =0

for all y € Y and so x € Y*. This shows that Y is closed.

For (b), notice that Y as a closed subspace is convex. By theorem 3.8, for any u € H, there
exists a unique y € Y such that ||u — y|| < ||lu — y’|| for all y’ € Y. Let z = u — y. We claim that
z € Y*. To see this, let yY € Y and 7 € R. Then

2l = llu—yl|? < lu—y -1y’
= flu—yl? = 2R (u—y, y)) + 2 |y'||?
= llzll® = 20R ((z, y')) + 2 |Iy'|I% .

Rearranging gives
20R((z, y) =2 Y I* < 0.

Ify’ = 0, we have (z, y’) = 0;if y’ # 0, then take 7 = ‘R((z, y') /||y’||2). Substituting this back

gives

059 BUe M (R y))’ | (R y))*
- 1% lIy'11? [k
Hence R ({z, y’)) = 0 for all y’ € Y. Similarly, replacing ¢ with ir gives J({(z, y’)) = 0 for all
y’ € Y. Therefore, (z, y’) = 0 for all y’ € Y and so z € Y. Since our choice of y is unique, we
can write u = y + z uniquely for y € Y and z € Y*. This shows that H =Y & Y.

For (c), note that we can apply (a) and (b) to Y+ and obtain that (Y*) is a closed subspace
andH =Y®Y" =Y )" @Y". It follows that for every u € H, we can write u = y +z = x + 2
for x € (Y*)*, y € Y and z € Y* by the uniqueness of decomposition. This implies that y = x
and hence (Y1) =Y. [

Remark
From the proposition, we can define the orthogonal projection PontoY as P(x) = P(y+y*) =y
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for all x € H where y € Y and y* € Y*. Such decomposition x = y + y* is unique by (b) and
hence P is well-defined.

3.2. Separability and Orthonormal Basis

Definition 3.11

A Hilbert space H is said to be separable if there exists a countable dense subset in H.

Definition 3.12
{xq | @ € A} C H, where A is an arbitrary index set. The linear span of {x, |« € A} is

defined as
span {x,} = {Z CaXa

a€A

caelelRorC},

where the sum is a finite sum.

Definition 3.13
{xq | @ € A} C ‘H, where A is an arbitrary index set. The closed linear span of {x, | « € A}

is defined as the smallest closed subspace of H containing {x, | @ € A}.

Proposition 3.14
Let Y = span({x,}) € H be a closed linear span of {x,}. Then for any x € H, {(x, xo) = 0 for
alla € Aifand only if {x, z) =0 forall z €Y.

Proof. Assume first that for x € H, (x, x,) = 0 for all « € A. For each z € Y, write z =

> ajeA CajXa;- Then

M M

Jj=1 J
The converse is trivial since x, € Y for all @ € A. [

Definition 3.15
{xq | @ € A} is said to be orthonormal if (xm x;;) = 0qp forall a, B € A.

Definition 3.16

{xo | @ € A} forms a othonormal basis of H if it is orthonormal and span({x,}) = H.

Remark
This definition of basis is different from the definition of basis in linear algebra. In linear
algebra, one can only express a vector as a finite linear combination of basis vectors; however,

in Hilbert space, one can express a vector as a countable linear combination of basis vectors.

Lemma 3.17 (Bessel’s Inequality)
Let {x, | @ € A} be an orthonormal set in H. For any x € H, let c, = {(x, xo). Then
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(@) The set {a | cq # 0} is at most countable.

®) T lcal® < lIxl1%

Proof. We assume that (a) is established and prove (b) first. Let / C A be a countable subset
with J = {a; | kK € N}. For each M € NN,

2 M M
= > leal” - 2%(<x, D x>) + |xll?

0<
k=1 k=1 k=1
M 5 M M 0 M 5
= > lea —2%(2@@, xak>)+nxn2:2|cakl =2 fea]” + IxI?
k=1 k=1 k=1 k=1
4 2 4 2
=l = Y Jeal” = D lew]” < Il
k=1 k=1

Taking M — oo, we have } ;7 ; |cak|2 < |IxlI.
Now we turn back to establish (a). For m € N, let J,, = {a € A | |co| = 1/m}. Then J,, is
finite or we can find infinitely many a € J,, such that |c,| > 1/m. This implies that x € H

1
2 2 2
o2 = Ylel? 2 Y lealtz Y S5 =

a€A aed,, aeld,,

which is absurd. Thus J,, is finite for all m € IN. Observe that | J,,enJm = {@ € A | ¢, # 0}.

It follows that as a countable union of finite sets, {@ € A | ¢, # 0} is at most countable. (b)

and

follows from (a) and the previous argument. [

Remark

There is a non-separable Hilbert space. Consider an uncountable set S. Let

Wz{f:S—HR

Z f(5)% < oo, £(S)\ {0} is at most countable} )

seS

Then H is a Hilbert space with the inner product

(f.8) =D F(s)g(s).

seS

To see that H is a Hilbert space, note that the countable union of countably many non-zero

points is countable. Also, it is not separable since the set
{es: S > R|eg(t) =04}

forms an orthonormal set in H and for each s # r, |les — e;|| = V2. This shows that it is

nowhere dense in H. Thus H is not separable.

Proposition 3.18
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Let {x,} be an orthonormal set and Y be the closed linear span of {x,}. Then

Y = {Z CiXa; Z |cj|2 < oo, € A}.

J J

Proof. Let § = {Zj CjXa; | 2 |c_,~|2 <oo,q; € A}. Forx € §,x = X cjxo; with }; |c_,~|2 < o0,
Then z, = Z;le CjXq; — x asn — oo. Each z, € Y and thusx € Y. Hence S C Y.

Conversely, we claim that S is a closed subspace of H. Clearly 0 € S. For ¢ € F, x =
2jCjiXa; €ESandy = 3} ;djx,; € S, we have

cx+y= chjxaj + Zdjxaj = Z(ch +dj)xq; €S,
J J

J

where the summation is over all j such that either c; # 0 or d; # 0. To see that S is closed,

< oo for all n € N. Let J, = {a;? je]N}

and J = |J,J, C A is at most countable. Consider the transformation 7 : § — (2 de-

let z, € S where z, = 2 i c;fx(,r’; with ) i

n
C.
J

fined by 3 cjxq, — {c;}. Such definition is well-defined since if 3; c;xo, = X; d;Xq,, then
2j(cj —dj)xa; = 0 and thus c; = d; for all j since every x,, is orthogonal and thus linearly
independent. Furthermore, T is clearly linear. Also, it is isometric since

Z Cjta;

7

2

= D leil = el

J

For z, € S, z, — z. Since z,, is Cauchy and T is isometric, {c;‘} is Cauchy in ¢? and thus
converges to some {c;} € (2. Define w = 3, jCjXa; € S. It follows that Tz, — Tw. Hence
z =w € S by the isometry of T. Thus S is closed. It follows that by the definition of Y, Y c S.

We conclude that Y = S. ]

Lemma 3.19 (Gram-Schmidt)
Suppose {x,} is an orthonormal set in H with span({x,}) # H. Then there exists y € H such
that {x.} U {y} is orthonormal.

Proof. Pick z € H such that z ¢ span({x,}). By lemma 3.17, there are at most countably
many a such that (z, x,) # 0. Let a; denumerate all & such that (z, x,) # 0. Set Z =
¥ (2. Xa,) Xa,. For each x,,,

m
<Z -2, xak> = lim (z— Z (z, xaj>xaj, Xay

m—oo
j=1

m
nll_rgo (Z, xak) - Z <Z’ Xaj> Ok
=1

= <Z’ xak) - <Z’ xak> =0.
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And for those x, such that (z, xo) = 0, (z = 2, xa) = (2, Xa) — (£, Xo) = 0 since x,, and x, are
orthogonal. Now set y = (z — 2)/||z — 2||. Then {x,} U {y} forms a orthonormal set. [ ]

Theorem 3.20

Every Hilbert space has an orthonormal basis.

Proof. We plan to use Zorn’s lemma. Denote the space consisting of all orthonormal sets in
H by O. Define a partial order as the inclusion of sets. Let C € O be a chain. We claim that
B = Uy, }ec 1o} 1s an upper bound of C. By construction we have {x,} C B for all {x,} € C.
We need to show that B € O. For distinct x,, xg € B, they belong to a common set C € C C O.
Hence C is orthonormal and (xo,, x/g> = 0. Also, it is clear that for every x, € B, x, belongs
to some C € C and thus ||x,|| = 1. It follows that B is also orthonormal. By Zorn’s lemma,
there exists a maximal element in O, say B, such that if C € O and B c C, then B = C. We
claim that B is an orthonormal basis. It suffices to check that spa—n(B) = H. Suppose not,
then by lemma 3.19, there exists y € H such that {x,} | {y} forms an orthonormal set. This
contradicts the maximality of B. We conclude that B is an orthonormal basis. [

Theorem 3.21
Let F = Ror C. Suppose that H is a Hilbert space. Then H is separable if and only if H has

a countable orthonormal basis.

Proof. Suppose that H has a countable orthonormal basis {x,}. Then consider the sets

n

An: ZC]')CJ' Cj €Sy,
j=1
where S = Qif F = Rand § = Q + Qi if F = C. Since S is countable, each A, being a
finite union of countable sets is countable. Put A = [ J,, A, and let € > 0 be given. Since A
is a countable union of countable sets, it is also countable. For every x € H, we can write
x =2 (x, xj->xj with

(o]

€
5 x| <&

j=N+1
for some N € IN. Since S is dense in IF, we can pick some c; € S with |cj - (x, xj>| < €/2/*1,

Then

N

X—ZCJXJ

j= j=1 1:1 j=1

IA |
e LD
= =
E
~ ~
<. \X
|
Ingh M =
= ><
\X
&k
+
M=
M= "
= &k
k><
~
\k
M
M
&Q
&X

I/\

IA
Nk
=
=
~
<
~.
+
~.
ip1=
—~
=
=
Q
=
=
I/\
l\')l m
&Mz
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It follows that A is dense in H and hence H is separable.

Conversely, suppose that H is separable. Let S ¢ H be a countable subset. Assume that
every orthonormal basis of H is uncountable. Denote an orthonormal basis of H by {x,}.
|xa —xﬁ” = V2. Consider the open balls B1/2(xq). They are
clearly disjoint since if y lies in two such balls, then V2 = ||x(x - xﬁ” < |lxe =yl + ||y - xﬁ” <1,

For each distinct x, x5 € S,

which is absurd. Now since S is dense in H, for each @ we can find some s, € S such that
Sq € Bija(x,). It follows that each s, is distinct and thus § is uncountable. This contradicts

to our assumption that S is countable. Thus 9 must have a countable orthonormal basis. =

Proposition 3.22
Let ‘H be a Hilbert space and {x, | @« € A}, {y/; | B e B} be two orthonormal bases in H. Then
card(A) = card(B).

Proof. Fixed ana € A, B, = {8 € B | (yg, xo) # 0} is at most countable by lemma 3.17 and
B, C B. We claim that B C (J,cs Bo. Take € B, we can write yg = > (yﬁ, xak>xak with
at least one (yﬁ, xak> # 0. Hence 8 € B,, for some a; € A. It follows that B C | J,c4 B, and
hence card(B) < card(A). By symmetry, we have card(A) < card(B) and thus card(A) =
card(B). [

Remark
If H is separable, then H has a countable orthonormal basis and hence every orthonormal

basis of H is countable.

Proposition 3.23 (Parseval’s Identity)
Let {x,} be an orthonormal basis of H. Then

Il = ) e xa, )
J

Proof. Let x € H. Write x = }; ¢x,; with }’; |cj|2 < o0, Then

M M
<x, xak> = lim <Z CjXajs xak> = A/IIEnOOch <xaj, xak> = Cg.

M—oo
=1 j=1
It follows that
M M M \ , )
Iell? = Jim <chxa_,, chxa_,) = Jim 3 leil = D lesf" = 31w x)I
j=1 j=1 Jj=1 J J

3.3. Riesz Representation and Bilinear Form

Proposition 3.24

F=RorC.T:H — Fisa nonzero bounded linear functional.
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(@) H = span({w}) @ ker(T) for w ¢ ker(T).

() If S, T are bounded linear functionals and ker(S) = ker(T), then there exists ¢ € F such
that S = cT.

(c) ker(T) is closed.

Proof. For (a), since T is nonzero, there is some w such that Tw # 0. For x € H, set o =

Tx/Twand u = x — aw. Then x = aw + u and
Tx
Tu=Tx—-—Tw=0.
Tw

Hence u € ker(T). Also, if v € span({w}) N ker(T),v = cw and Tv = 0. Then ¢Tw =Tv = 0;
¢ = 0 and thus v = 0. Therefore, span({w}) (N ker(7T) = {0} and H = span({w}) & ker(T).

To see (b), note that if § = 0, H = ker(S) = ker(7T). Thus T = 0. If S # 0, by (a) we can
write H = span({w}) & ker(S) = span({w}) & ker(T). Then for every x € H, x = aw + u for
some « € F and u € ker(T) = ker(S). Then Tw # 0 and

S S S
Sx=S(aw +u) = asSw = aTw2 = —WT(aw +u) = Yoy,
Tw Tw Tw
Taking ¢ = Sw/Tw gives S = cT.

For (c), let x, € ker(T') be a sequence such that x, — x € H. Since T is continuous,

Tx = lim Tx,, = 0.

n—o0

Hence x € ker(T') and ker(T) is closed. [

Theorem 3.25 (Riesz Representation on H)
F=RorC. T:H — Fisabounded linear functional. Then there exists a unique x* € H
such that Ty = (y, x*) for all y € H.

Proof. If T = 0, pick x* = 0 then Ty = 0 = (y, 0). If T # 0, there is some w € H such that
Tw # 0. By proposition 3.24, we can write H = span({w}) @ ker(T) with ker(T') closed. Also,
H = ker(T) & ker(T)* by proposition 3.10. We claim that ker(7)* = span({w}). First note
that ker(7)* # {0} or we would have H = ker(T) and T = 0, contradicting to our assumption.
Now if z1,z9 € ker(T)*, write z1 = a1w + u1 and zo = asw + us for some a1, as € F and
ui,ug € ker(T). Then agz1 — @122 = asuy — aqug € ker(T) and asz1 — @122 € ker(T)+. Hence
a9z1—a1z2 = 0 and z1, 79 are linearly dependent. Now define S : H — F by Sx = (x, w). Then
S is a bounded linear functional and ker(S) = {x € H | (x, w) = 0} = (ker(T)*)* = ker(T)
by proposition 3.10. Applying (b) of proposition 3.24 gives ¢S = T for some ¢ € F. Then
Tx =cSx =c{x, w) = {x, cw). Set x* = cw proves the existence of x*.

To see uniqueness, suppose x7,x; € H are such that Ty = (y, x{) = (y, x;> forall y € ‘H.

Then (y, x] = xé} =0 for all y € H. Hence x] —x; = 0 and x] = x;. Such x” is unique. [
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Remark
From the Riesz representation, we can see that H’ = H and applying the Riesz representation

theorem again gives H" = H. Thus H is reflexive.

Definition 3.26
The adjoint operator of T : H — H is the operator T* : H — H such that (Tx, y) = {x, T*y)
forall x,y € H.

Remark
T : H — H is a bounded linear operator. By the Riesz representation, H' = H. Thus T’ :
H' — H'isdefinedbyT" : € — T =(T.T" : H — H' = Hisdefinedby T* : x — T*x =T'{y.
Forx,y € H,

(Tx, y) = (6, T'Y) = Croy (x) = T'6,(x) = £, (T).

Definition 3.27
Let X,Y be vector spaces. T : X — Y is called skew-linear if T(cx +y) = cTx + Ty for all
x,ye XandceF.

Definition 3.28

F=RorC. B:HxH — Fiscalled a bilinear form if
(a) B(-,x) is linear for all x € H.
(b) B(x,-) is skew-linear for all x € H.

Definition 3.29

A bilinear form B : H X H — F is called bounded if there exists C < oo such that |B(x,y)| <
CllxI[ Iyl for all x,y € H.

Definition 3.30
A bilinear form B : H x H — F is called coercive if there exists 5§ > 0 such that B(x,x) >
5 ||x||? for all x € H.

Theorem 3.31 (Lax-Milgram I)
LetF=RorC. B: H xH — Fis a bounded coercive bilinear form. Then for every L € H’,
there exists x € H such that Ly = B(y,x) forall y € ‘H.

Proof. Fixed x € H. Then B(-,x) is a bounded linear functional defined on H. By Riesz
representation, there exists a unique x* € H such that B(y,x) = (y, x*) for all y € H. Define
T :H — H by Tx = x*. Such definition is well-defined because x* is unique. We claim that
T is bounded and linear. For linearity, let x, y,z € H and ¢ € F. Then

(y, T(cx+2)) = B(y,cx+2z) =¢cB(y,x) + B(y,2) =¢c{y, Tx) +{y, Tz) =y, cTx+Tz).
Hence T'(cx + z) = ¢Tx + Tz. For boundedness, by proposition 3.5,

ITx[| = sup [(y, Tx)| = sup |B(y,x)| < sup C |lx[/|ly]l = C |lx]|.
Iyli=1 Iyli=1 Iyli=1
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Hence T is bounded.
Next, let A = T(H). We claim that A is closed. Let y, — y and y, € A. By the bounded-

ness of T we have ||Tx|| < C ||x||. Also, by the coerciveness and proposition 3.5,

(7

So ||x]| < % |I7x||. Then we see that the norms ||-|| and ||7'(-)|| are equivalent. For y, € A, we

8 |bxll? < B(x,x) < |B(x,x)| = |(x, Tx)| = [lx]| < |lx|l sup [y, Tx}| = [lx[| [|Tx]| .

lyll=1

can find x,, € H such that T'x, = y,. Since y, is Cauchy, x, is also Cauchy by the equivalence
of norms. By the completeness of H, x, — x € H. Then the boundedness of T implies the
continuity and Tx, — Tx. It follows that y = Tx by the uniqueness of the limit. Hence y € A
and A is closed.

Finally, we claim that A = /. Assume not. Then because A is closed, H = A & A+ with
At # {0} by proposition 3.10. There is some z € A such that (z, y) = 0 for all y € A+. This
implies B(z,x) = (z, Tx) = 0 for all x € H. Taking x = z gives 0 = B(z,z) > 6 ||z||* by the
coerciveness of B. Hence z = 0, At = {0}, and A = H, a contradiction. We conclude that
A=H.

For any bounded linear functional L, there is x* € H such that Ly = (y, x*) forall y € H
by Riesz representation. Then there is x € H such that Tx = x*. Then for all y € H,

Ly = {y, x") =y, Tx) = B(y, x).
This completes the proof. [

Remark
Lax-Milgram theorem ensures the existence of weak solutions to linear PDEs. For example,

consider the Poisson equation
—Au=f onQcCRY ulyg=0

for f € L2(Q). A= Zidzl l.2 is the Laplacian. Then for all ¢ € CZ,

L(so):B(u,sD):/QVu-Vw:/wa-

Definition 3.32
A bilinear form B : H x H — F is called symmetric if B(x,y) = B(y,x) forall x,y € ‘H.

Theorem 3.33 (Lax-Milgram II)
Let F = Ror C. Suppose that B : H X H — F is a bounded symmetric coercive bilinear form

and L € H’ is a bounded linear functional. Then

1
inf —B(x,x) — Lx
xeH 2
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is attained at a unique x € H.

Proof. Set F(x) = %B(x,x) — Lx and
= inf F(x).
°= inf P
We check that « is finite. Notice that for all x € H,

2
< SCIXI+ L ]l < o0

DN

1 1 1
M <36 el = LI el < g B0nx) —|Lx| < F(x) < | B(x,x) - Lx

for some finite M,C > 0 and 6§ > 0. The first inequality is due to § > 0 and the quadratic
function is bounded below. Taking infimum of F(x) gives that « is finite.
Now by definition we can find u,, € H such that F(u,) — a. We claim that u, is Cauchy.

For all n,m € N, we have

1 1
F(uy) + F(uy,) = §B(um, Um) — Lu, + EB(u”, u,) — Lu,

u u u u U, +u
=2(8(5 %) + 8(5- 5)) —2L(75)
5 ) TBlo ) 2 T

:2[1(3(%”-”!” um+un)+B(um—un um;un))_L(um+u,1)

2 2 72 2 2
um+un) B(um—un’um—
2 2

0
:2F( un)22a+z||um—un||2.

For arbitrary € > 0, there is N € IN such that for all m,n > N, F(u,,), F(u,) < a + €. Then

0 8
2a + 1 |7 u,,||2 < F(uy) + F(u,) <2a+2¢ = ||luy — un||2 < §

Since € is arbitrary, we obtain that u, is Cauchy. By the completeness, u,, — u for some
u € H. We check that u is the minimizer of F, i.e. F(u) = a. Observe that if for u,, — u and
v, — v, we have B(u,,v,) — B(u,v) and Lu,, — Lu. Indeed, Lu, — u by the boundedness

and hence the continuity of L. Also,
|B(un, vi) = B(u,v)| < |B(up = u,vi)| + |B(u, vy = v)| < C lluy = ull [|vall + C llul| [V = v]| = O
since u, — u as a Cauchy sequence must be bounded. This implies
1 1
F(uy,) = EB(Mn’ u,) — Lu, — EB(M, u) — Lu = F(u).

The uniqueness of the limit of u,, ensures that the minimizer is unique. [ ]

Theorem 3.34

Let F = Ror C. Suppose that B : H x H — F is a bounded symmetric coercive bilinear form
and L € H’ is a bounded linear functional. xo € H is a minimizer of F(x) = %B(x,x) — Lxif
and only if B(xo,y) = L(y) forall y € H.
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Proof. Suppose that xq is a solution to B(xg,y) = L(y) for all y € H. Then for all x € H,

1 1
F(xo+x)— F(xg) = §B(x0 +x,x0 +x) — L(xg +x) — §B(x0,x0) + L(x)

1 5
= B(xg,x) — L(x) + 5B(x,x) 25 X2 >0

by the coerciveness of B. Hence F(xo) < F(xo + x) for all x € H and x¢ is a minimizer.
Conversely, suppose that xo minimizes F. For all r € R and y € H, consider the function

¢(t) = F(xo + ty). Then since xo minimizes F, ¢’(t)|,—o = 0. We compute that

1
¢(t) = F(xo +ty) = §B(X0 + 1y, X0 +1y) — L(xo + ty)

1 1
= 5 B(x0,x0) +1B(x0, ) + EIQB(y,y) — L(xo) — tL(y).

Differentiating gives

0=¢"(t)|,=0 = B(x0,y) = L(y) + tB(y,y) |;=0 = B(x0,y) = L(y)

for each given y € H. Hence x( satisfies B(xg,y) = L(y) for all y € H. [

3.4. Symmetric and Compact Operators

Definition 3.35
D(A) c H is dense in H. A linear operator A : D(A) — H is said to be symmetric if
(Ax, y) = {(x, Ay) for all x,y € D(A).

Remark

Note that the domain D(A) is dense in H. It follows that by density, the domain can often be
extended to H. For simplicity, we consider the domain to be H, but the domain can be any
dense subset of H.

Definition 3.36
A € Fis an eigenvalue of a linear operator A : H — H if there exists a non-zero vector x € H

such that Ax = Ax. The vector x is called the eigenvector corresponding to the eigenvalue A.

Proposition 3.37

Let A : H — H be a symmetric operator. The followings are true.
(@) (Ax, x) e Rforall x € H.
(b) If A € Fis an eigenvalue of A, then 1 € R.

(c) If 11,19 € F are two distinct eigenvalues with respect to eigenvectors x1,xo € H, then

(x1, x2) = 0.
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(d) Suppose {x,} is an orthonormal basis of H with the property that each x, is an eigen-
vector of A corresponding to the eigenvalue A,. Then if u € F is also an eigenvalue of A,

then u = A, for some a.

Proof. For (a), (Ax, x) = (x, Ax) = (Ax, x). Then J({Ax, x)) = 0 and (Ax, x) € R.
For (b), let x € H be the corresponding eigenvector to A. Then

_ (Ax, x)

(Ax, x) = (Ax, x) = Ax, x) = A|x[|*? = 2 P
x

For (c), by symmetry and (b), we have
A1 (x1, x2) = (Ax1, X2) = (x1, Axg) = A (x1, X2) = Az (x1, X2).

Since A1 # A9, {x1, x2) = 0.
For (d), let u € FF be an eigenvalue of A with eigenvector y € H, y # 0. We claim that

M = A, for some @. Suppose not. Then write y = >} ¢;Xq,, where c; € F. We see that

M
Iy = Jim, <y, > > = lim 77 (3, x0,) = 0

—00
Jj=1

by (c), but this is a contradiction since y # 0. Thus u = 4, for some «. [

Definition 3.38
A linear operator A : H — H is called bounded if

Al = sup [|Ax|| < co.
llxll=1
Proposition 3.39

A : H — H is a symmetric bounded linear operator. Then

Al = sup [(Ax, x})|.
llxll=1
Proof. Assume ||x|| = 1. By Cauchy-Schwarz inequality, |{Ax, x)| < ||Ax|| [|x]| = ||Ax]||. Tak-
ing supremum,

sup [(Ax, x)| < sup [[Ax]| = [|A]l.
lkeli=1 lkell=1

2

To see the reverse inequality, note that || Ax||? = (Ax, Ax) = (A X, x). For any nonzero A € R,
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define x* = Ax + %Ax and x~ = Ax — /lle. Then x = %(x’r +x7) and Ax = ’%()fr —x7). Now,

<A2x, x) = <A(g(x+ —x_)), %(f +x_)>
= % (Ax+ —Ax", x”" +x_>

= 1(<Ax+, XY+ (Ax*, x7) = (AxT, xt) = (AxT, x7))

o~

Notice that <A2x, x), (Ax*, x*) and (Ax~, x7) are real numbers by proposition 3.37; hence

IJ((Ax™, x7) = (Ax~, x*)) = 0. Also, (Ax~, x*) = (x*, Ax~) = (Ax*, x7). Wehave J((Ax*, x7)) =

0 and (Ax", x7) — (Ax™, x™) = 0. Thus, letting C = sup=1 [{Ax, x)|,

<A2x, x> = (<Ax+, x+> + (Ax~, x_))
C (e + 11?)
= ZC((xJ“, x+> +(x7, x7))
_ %c(zﬁ 12| + % ||Ax||2) _ %c(ﬁ Ix]l? + 1—12 1Ax]2).
Notice that for a, b € R, (a — b)? > 0 and thus a? + b? > 2ab. Hence
22 [l + 5 AP = 2 Il % 1wl = 2 1 Ax]
We see that

1 1
| Ax||? = (A%x, x) < ECir;gﬂz Ilx )1 + = IAx|I* < C | Ax]| llx]l -

Clearly if Ax = 0 the inequality holds. Suppose ||Ax|| # 0. Then deviding both sides by ||Ax]||

and taking supremum gives

Al = ||Sl||1P1 | Ax]| < C||Sl||191 x|l = C = ”81”1?1 I{(Ax, x)|.

We conclude that [|A|| = sup, =1 [(Ax, x}|. [

Definition 3.40
X and Y are normed spaces. M C X. A : M — Y is an operator. We say that A is compact if A
is continuous and for every bounded sequence x,, € M, the sequence Ax, € Y has a convergent

subsequence.

Remark

A compact operator A transfers bounded sets in X to relatively compact sets in Y.

Example
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Consider the integral operator A : C([0,1]) — C([0, 1]) equipped with the supremum norms.
Define

1
Au(x) = /0 K(x.y) f()dy,

where K € C([0, 1]2). We verify that A is well-defined, i.e., Au € C([0, 1]). Let x, — x € [0, 1].

1 1
|Au(x,) — Au(o)] = ‘ /0 K (e, y)u(y)dy - /0 K(x,y>u<y>dy’
1
< /0 1Kt y) — KCra )| ()] dy < 1K Gins) = K Gr. o Nl

Since K is continuous, (x,,y) — (x,y) implies K(x,,y) — K(x,y). It follows that Au(x,) —
Au(x). Hence Au € C([0,1]).

We claim that A is compact. Let {u,} be a bounded sequence in C([0,1]). By Arzela-
Ascoli theorem, it suffices to show that {Au,} is bounded and uniformly equicontinuous. To
see the boundedness, note that by assumption we have ||u,|, < M for all n. Also, since K is

continuous on a compact set, we have K(x,y) < C for all x,y € [0, 1]. Then

|Aup|les = sup
x€[0,1]

1
e / 1K e )] lun ()] dy
xe[0,1] Jo

1
/0 K(x,ym(y)dy‘

1
< sup/ Cllinllos dy = C lunllos < CM.
xef0,1] Jo

Thus {Au,} is bounded. To see the uniform equicontinuity, let € > 0 be given. By continuity of
K, we can find 6§ > 0 such that whenever |x — z| < 6, |K(x,y) — K(z,y)| < €/M forall y € [0,1].
Then for each n € N,

1 1
|Aun(x) — Aup(2)| = ‘/0 K(x, y)un(y)dy —/0 K(z, y)un(y)dy‘
1 €
< / K (x,y) = K(z ) lun ()l dy < 27 llunlloo < €
0
Thus {Au,} is uniformly equicontinuous. By Arzela-Ascoli theorem, {Au,} has a convergent

subsequence, i.e., A is compact.

Definition 3.41
Let A : H — H be a linear operator. If A € F is an eigenvalue of A, then the corresponding
eigenspace is defined as

Ey={xeH :Ax = Ax}.

Remark
Clearly E, is a subspace of H.

95



Theorem 3.42 (Spectral Theorem for Compact Symmetric Operators)
Let ‘H be a separable Hilbert space. Suppose that A : H — H is a symmetric compact linear

operator. Then the followings are true.

(@) There exists an at most countable orthobormal basis {x;}, in which each x; is an eigen-

vector of A corresponding to an eigenvalue A;.
() If 4; # A;, then (x;, x;) = 0.
(c) Forany A # 0, dim(E,) < oo.
(d) If dim(H) = oo, then either A; — 0 or there is only finitely many A; # 0.

Proof. First note that if H = {0}, then the statements are vacuously true. We assume that
H # {0}. Assume first that dim(H) = oo and ker(A) = {0}. By the assumptions we can find
x € H such that |[|Ax|| > 0 and thus ||A]| > 0. By proposition 3.39, [|A|| = supj,j=1 [{Ax, x)|.
Hence there exists a sequence z,, € H such that |{Az,, z,)| — [|A|| with ||z,|| = 1. Let 11 € R
satisfying that 1; = sgn({Az,, z,)) ||A|| for n greater than some N so that the sign of (Az,, z,)
does not alternate. Now notice that

0 < [|A12, — Az,
= 12 lzall® + 1Azall? = 2121] (Azns 20)
< 2|1)% - 221 (Azy, 70) < 2|1)? = 2| A1] [{Azp, Z0)| — O.

Hence A;z,—Az, — 0. Since A is compact, {Az,} has a convergent subsequence, say A(z,,) —
y. Then A1z,, — A1x; for some x; € H with Ax; = y and then z,, — x;. Since A is continuous,
A(zy,) — Ax; implies that

Axy = khm A(zy) = klim A12Zn; = A1X1.

Note that ||an|| = 1 and thus ||x1|| = 1. We have shown that there exists an eigenvector x;
corresponding to an eigenvalue A1, with ||x1]| = 1 and |11 = ||A]|.

Next, define W1 = span({x1}) and W;- = {y € H | (y, x1) = 0}. Consider A; = A|W1¢. We
verify that A; : W;- — W is well-defined. For any y € Wy,

(A1y, x1) = (Ay, x1) = (y, Ax1) = (y, 41x1) = A1 (y, x1) = 0.
Hence A1y € W;. Observe that A; is also symmetric since for every y1,ys € Wy,
(A1y1, y2) = (Ay1, y2) = (y1, Ay2) = (y1, A1y2).

We show that A; is compact. Suppose y, € wf and y, — y € Wll. Then A1y, = Ay, —
Ay = A1y by the continuity of A. Also, if {y,} is a bounded sequence in W', then {A1y,} =
{Ay,} C WiL has a convergent subsequence. Since W1 is finite-dimensional, Wy is itself closed

and thus so does WiL by proposition 3.10. It follows that the subsequence converges in WIL.
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Hence A; is compact.

Now by similar argument as above, we can find xo € W; such that |[xaf| = 1, [12] =
|[A1]] < ||A]| = |A1| and Axe = A1xe = Agxe for some A9 € R. Continue the process. We obtain
a sequence {x j} such that each x; is an eigenvector of A corresponding to an eigenvalue A;
with |/lj| < |/lj_1| and ||xj|| = 1. Furthermore, observe that (x,», xj> = 0foralli # j and
| Aix1] = |lA:].

We verify (d) first. Notice that |1;| decreases and bounded below by 0. Hence |1;| — a.
By the compactness of A, there exists a subsequence x,, such that Ax,, converges. Thus Ax,,
is Cauchy and

”Axni - Axnj”2 = H/lnixni - ’l"jx"_fnz = |’1ni|2 + |/l"j|2
Note that the left hand side converges to 0 and the right hand side converges to 2a2. Hence
a=0.

Next, we show that dim(E,) < oo for 4 # 0. Suppose not. Then we can find a countable
orthonormal basis {x;} of E, with each x; corresponding to 1. By the compactness of A, there

exists a subsequence x,, such that Ax,, converges and thus Cauchy.
217 = 1A o [” + 141 o, [* = [, = s, [|* = [| A, = A, |[* = 0.

Hence |1| = 0, a contradiction. Thus dim(E,) < co.
Lastly, we show that span({x_,}) = H. For every x € H, consider the partial sum z, =
24 (x, x;) x;. We want to show that z, — x. Az, = X', A; (x, x;) x;. Notice that

n

(x = zn, x;) = <x SDIRCE DR x.i> = (x, %) = {x, x;) = 0.

i=1

Hence x — z, € W,. Thus since ||x — z,|| is bounded,
|Ax = Azy|| = |A(x = zo)[| = [[An(x = z) | < [[Anll [Ix = znll = [Ans1] llx = 2]l — O

Hence Az, — Ax and thus we can write Ax = Y, 4; (x, x;)x;. If y = 3, (x, x;) x;, then
Ay =2 4; (x, x;)x; = Ax. Because A has zero kernel, x = y = 2 (x, x;) x;. Thus we have
span({x;}) = H.

Now we drop the assumption that ker(A) = {0}. Note that ker(A) is a closed subspace of
H since if x,, € ker(A) and x,, — x € H, by continuity of A,

Ax = lim Ax, =0 = x € ker(A).

n—o00

It follows that by proposition 3.10, H = ker(A) @ker(A)~*. For ker(A), we apply theorem 3.20
to find an orthonormal basis {w;} of ker(A). Note that since {w;} C ker(A), each w; is an
eigenvector of A corresponding to the eigenvalue 0. Also, define A : ker(A)t — ker(A)+
by Aty = Ay. We verify that such definition is well-defined, i.e., Aty € ker(A)*. For each
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y € ker(A)*,
(Aty, w) = (Ay, w) = (y, Aw) =0

for all w € ker(A). Hence A*y € ker(A)*. Also, A* inherits the compactness and symmetry
of A. By the previous argument, we can find an orthonormal basis {x j} of ker(A)* such that
each x; is an eigenvector of A* and thus A, corresponding to an eigenvalue A;. Notice that
(wk, X j> = 0. Thus {w;} U {xj} forms the desired orthonormal basis of .

Finally, if dim(H) = oo, then (c) and (d) are vacuously true. (a) follows by applying the
above construction with the process being terminated in finite steps. Once (a) is established,
(b) follows by observing that x; and x; are distinct eigenvectors in the orthonormal basis and

thus must be orthogonal. [

Definition 3.43
Let H be a separable Hilbert space and A : H — H be a symmetric compact linear operator.
Then for each x € H, we can find {x j} and {wy} are orthonormal bases for ker(A)* and

ker(A) respectively such that
X = Z <x, xj>xj + Z (x, wi) we.
J k

Such decomposition is called the spectral decomposition of A.

Theorem 3.44 (Fredholm Alternative)
Let H be separable. Suppose A : H — H is a symmetric compact linear operator, A # 0. Let
Ny ={x € H | Ax = Ax}. Then the equation

Ax—Ax =z

has a solution if and only if z € N j Furthermore, if A is not an eigenvalue of A, then the

solution is unique.

Proof. Consider the orthonormal eigenbasis {x j} U {wk} of A with nonzero eigenvalues 4,
for x; and zeros for w;. Suppose first that A # 4, for all j. This is equivalent to that N; = {0}
and Ny = H. For every z € H, by setting

1 1
o ;/l—/lj (z x1>xj+zk:/—l<2, Wk) Wk,

we see that

1 1 Aj
/lx_Ax:/l;/l—/lj (z, x;) x; +/lzk:/—l<z, Wk>Wk_Z/l_j/1j (2. x7) %)

J
= Z (z, xj)x; + Z (z, wi) wi = z.
7 3
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We verify that such x indeed belongs to .

2
Iell® = ’ﬁ _lﬂj (@ x)| + 2, H 2 wi)
J k

for some C, by the Parseval’s identity. Since 1 # 0, C, is finite and thus x € H. To check the

uniqueness, it suffices to show that the homogeneous equation Ax — Ax = 0 implies x = 0.

? 1 2 1 2 2
< sup —— [|z]12 + sup — [l2[I% < C ||z
i -] e 1A

Indeed, if x # O satisfies Ax — Ax = 0, then A becomes an eigenvalue of A with eigenvector
x, which contradicts to our assumption. Hence the solution is unique. The converse is trvial
since Ny = H.

Now suppose that 4 = A; for some j, say j = 1. Then N; = E,,. If z € E/t, then since
dim(E,,) < oo by the spectral theorem, E,, is a closed subspace of H and hence Ejl by
proposition 3.10. Thus for such z, we can write z = ;.3 .41, (z, xj)x; + X (2, wi) wi. Set

1 1
* Z A-2; (z xj>xj+zklz<z, W) W

Jidj#Ay

Then

1 1 A;
/lx—sz/l..E -1, <Z,xj>xj+/l E /—1<Z,Wk>Wk—..§ Py <Z’xj>xj
Jidj#FAL . k Jidj#A

= Z <Z’ xj>xj +Z<Z, Wi) Wi = Z.
k

JiiEd

We verify that such x indeed belongs to /. By exactly the same argument as above,

1
2 2 2 2
[lx[|* < sup 5 12l + sup — |z[|” < Callz]l” .

Jij#A |/1 - ,1/.| k|4

Since by the spectral theorem we have 1; — 0 as j — o, C; < . We conclude that the
equation Ax — Ax = z has a solution if z € Ny. Conversely, if x is a solution, then for every x;,
with 4, =41 =4,

<Z’ 'xji> = </lx - Ax, xji> = </lx’ xji> - <Ax’ 'xji>
=4 <x’ xji) - <x’ A“xji> =0.=4 <x’ x./i) - /lfi <x’ “xji> =0.

We see that z e N j This completes the proof. [

Remark

If A is an eigenvalue of A, we can actually find infinitely many solutions. Since every eigen-
vector x corresponding to A would become a homogeneous solution, for any solution xy such
that Axg — Axg = z, X0 + x forms another solution for any x € E,. In other words, the set of

solutions is xo + E.

99



4. Approximation Theory and Fourier Theory

4.1. Approximation by Polynomials

Proposition 4.1

Let X be a finite-dimensional vector space. Then every norm on X is equivalent.

Proof. This can be seen as a special case of proposition 2.95, as any finite-dimensional vector

space is a Banach space. However, we also have a simple proof here.

Let {e1,...,e,} be a basis for X. For any x € X, we can write x = 3, ; x;e¢;. For any norm
Il on X,
n n n
ell = | > xiesf| < > il leall < (m,ax ||ei||) D il = Callxlly -
: ‘ 1<i<n L
i=1 i=1 i=1
where ||-||; is the £! norm. Also, this implies that ||-]| : X — R is continuous with respect to

the ¢! norm since

xll = IyllT < llx = yll < Collx = ylly -

Now for any x # 0, the function f(x) =

ﬁ” is continuous on S = {x € X | ||x||; = 1}, which

is compact. By extreme value theorem, f attains its minimum on §, which leads to

X X
el _ |l _x S Cy> 0
lxlls Il
for some Cy > 0 since x # 0. Thus ||x|| > C2 ||x||; and the norms are equivalent. [

Remark

Every finite-dimensional normed vector space is complete.

Remark

Every closed ball in a finite-dimensional normed vector space is compact.

Theorem 4.2
Let X be a Banach space and Y be a finite-dimensional subspace. For any x € X, there exists
a y* €Y such that

[lx = y*ll = inf [lx - yI|.
yeY

Proof. Since Y is a subspace, 0 € Y c X. Then ||x — y*|| £ ||x|]|. Consider the closed ball
B={yeY||x—-yll <|x|I}. Let f(y) = ||x — y||. Observe that

lF ) = f@I=llx =yl = llx = zlll < lly -zl

and f is continuous. Since B is compact, f attains its minimum at some point y* € B C Y.

Thus ||x — y*|| = inf ey [|x = y]l. "
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Proposition 4.3
Let X be a Banach space and Y C X be a finite-dimensional subspace. Suppose that for each
x € X, there corresponds a unique y, € Y such that ||x — y.|| = infycy ||x — y||. Then the map

P : X — Y defined by P : x — y, is continuous.

Proof. Let x, — x in X. Since
IP(xa) |l = [1P(xn) = Xn + Xull < ([P (x2) = xull + [lxa]l < 2||xall,

P(x,) is bounded. By Bolzano-Weierstrass theorem, there is a subsequence x,, such that
P(x,,) — P(X) for some % € X. It remains to show that P(x) = P(X). Indeed,

1P Geny) = x| < [PG) = x|

for all k. Letting k — oo gives [|P(%) —x|| < ||[P(x) —x]||. Since the minimizer is unique,

P(x) = P(%) and x = %. Hence P is continuous. [

Theorem 4.4
Let X be a Banach space, Y C X be a subspace, and x € X. Then the set

Y, = {)’ €Y | y = argminer ||X - )’||}
is a bounded convex set.

Proof. Since0 €Y, forally €Y,, ||yl < |lx = y||+|x|]| £2|x||. Thus Y, is bounded. To see the
convexity, let y1,yo € Y, and t € [0,1]. Then ty; + (1 —¢t)yg € Y and

e = (ty1 + (T =)ya) |l = [l1(x = y1) + (1 = 1) (y2 = )|
Stllx=yull + (@ =2) flx =yl
= llx = yall = [lx = yzll

since y1, yg € Y. Thus ty; + (1 —t)yg € Yy and Y, is convex. [ ]

Definition 4.5

A Banach space (X, ||-||) has a strictly convex norm if
[l + Il < llxll + [yl

for all x,y € X such that ax # By forall a,5 € R

Remark

L? spaces are strictly convex for 1 < p < co.

Definition 4.6
For any bounded function f : [0,1] — R, the Bernstein polynomial of degree n for f is defined
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as
B,(f)(x) = Zf( )( ) (1—x) -,

Theorem 4.7 (Weierstrass)

Let f € C([a, b]). Then for any € > 0, there exists a polynomial p such that || f — p||l., < €.

Proof. First consider the mapping o : x — a + (b — a)x for x € [a, b]. Then by replacing f
with f o o, we can assume thata =0 and b = 1.

Now consider the Bernstein polynomial B, (f). Since f is continuous on [0, 1], which
is compact, f is uniformly continuous. Thus for any € > 0, there exists a § > 0 such that
|x —y| < 6 implies |f(x) — f(y)| < €. Let F = {k €{0,...,n} | |x - §| < 5}. We can compute
that

Bu(f)(x) = f(x)] = ‘f(X)—Zf( )( )x (1-x)"*

f(X)—f(—)‘( ) R

oo
kgF k

i ( ) k(l—X)”_k+2||f||mZ(Z)xk(1—X)”_k

keF

k= k¢F
§ k n
Se+2||f||ooZIL{x—— 25}( )xk(1—x)"-k
— n k
51 k\*(n k Nk
<e+2|flle ;)ﬁ(x—;) (k)x (1-x)
=€+2 ”f” x? ——kx+k— " XK (1 -x)"k,
52 — n n? J\k
Now let .
S(x.y) Z(k) = ey
k=0
Then
S <
nx(x+y)"l=x—=>» k " xkynk,
0x — k

(S5

2S n
n(n—l)xz(x+y)”_2:x2ﬁz k(k 1)( ) kyn=k,
X

Taking y = 1 — x gives

< 2k k2 2 1 1- 1
sz——x+— nxk(l—x)”_k:x2——x-nx+—(n(n—1)x2+nx)=x( x)s—
n2 n n2

pr n k n 4n
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Hence we obtain the estimate

1/ lloo
Bu) () - fO0l < e Pl
Letting n — oo and by the arbitrariness of €, we see that B, (f) — f uniformly. [

Remark
An alternative expression for the Weierstrass theorem is that for such f, there exists a sequence

of polynomials p, such that p, — f uniformly.

Remark

As a direct consequence of the Weierstrass theorem, the polynomial space is dense in C([0, 1]).

Definition 4.8
AmapT:C(|a,b]) = C([a,b]) is said to be positive if T(f) > 0 for all f > 0.

Proposition 4.9
The map U : C([0,1]) — C([0,1]) defined by f + B,(f) is linear, positive, and continuous.

Proof. To show the linearity, let c € Rand f, g € C([0,1]). Then

Uter + 000 = Y (ef(x) vl 1) (1] -r
=0

s f(%)(’;)xk(l —x)" k4 kzz;)g(g)(Z)xk(l —x)" % = cU(f)(x) + U(g) (x).

k=0

To show the positivity, let f > 0. Then f(%)xk(l —x)"% > 0forall k and x € [0, 1]. Then
the sum is nonnegative and U( f) > 0.
To show the continuity, it is enough to show the boundedness of U.

n
k\(n e
U)o = sup Zf(—)(k)xk(l—X) ¢
xe[0,1] 1= \7
< k\|(n
< sup Z f(—) ( )xk(l—x)”_k
refo1] =" \n /| \k
n
n e
< sup leflloo(k)xk(l—X) =11l
)CE[O,].] k=0
Hence U is a bounded linear operator and thus continuous. [

Theorem 4.10 (Korovkin)
LetT, : C([0,1]) — C([0,1]) be positive linear maps. Suppose that T, ( f;) — f; uniformly for
i =0,1,2with fi(x) = x'. Then T,,(f) — f uniformly for all f € C([0,1]).
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Proof. Let € > 0. Since f is continuous on a compact set, we can assume that it is Lipschitz
with constant L. Now observe that

_ 2
() = fla)| < Lix—a| < Le + LE=9D"
€
This can be verify as follows,
L|x—a|SL6SLE+L@ if [x —a| <e,
L|x—a|£L@§L6+L@ if |x —al| > e.

Next, we apply 7,, and note that we have |T,,(f)| = T,,(| f|). Then,

IT,(f)(x) = f(a)| < T () (x) = f(@)Tu(fo) ()| + | (@) T, (fo) (x) - f(a)l
=T.(If = f(@Dx) + | f(@)]|T.(fo) (x) = fol

< L[ 0 + 1T = 20 + )0 + 11 T3 o) = ol
< Le(T(0) () ~ fol) + Lefo(x) + < (Tu(f2)(3) = o)) + = o)
2
2R G ) - A = 2 00+ EE G ) - folo)
2
+ 5 o) + 11 1T o) = ol
< LT (o) ~ folla + = W () = olls + 222 T (1) ~ fille

2L L
+ aT IT2(fo) = folleo + I flleo ITa(fo) = folloo + Le + —(x = a)®.

Now taking a = x and then taking supremum over x € [0, 1] gives

1T (f) = flleo < Le I T(fo) = folloo + % I7:(f2) = felleo

2L L
+ — ITu(f1) = fillo + Z ITa(fo) = follw + I flleo ITn(fo) = follow + Le.

By the assumptions, there is N such that n > N implies that

IT,(f) - fillo < €%, i=0,1,2.

Thus,

IT2(f) = flleo < Le® + 5Le + || fl| o €.
Since € is arbitrary, we obtain that 7,,(f) — f uniformly. [
Example

Let f € C([0,1]) and L,(f) be the polygonal approximation of f with nodes at k/n for k =
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0,...,n e,

i =1 (L)l (S2) e 3) e 55

Now L,(1) = 1, L,(x) = x, and ||Ln(x2) —x2||oo < maxg<i<n-1 (k:21)2 - ﬁ—i < % — 0. By the

Korovkin theorem, we can conclude that L,(f) — f uniformly for all f € C([0,1]).

Definition 4.11
Let f be a bounded function on [a, b]. The modulus of continuity of f is defined as

wr(0) = |S—u|ga |f(x) = Fl-
x,ye)[}a_,b]

Definition 4.12
A function f is said to be Lipschitz of order « if

|f(x) = fO)I <M x = y|*
for some M > 0 and all x,y € [a, b].
Proposition 4.13
Let f be a bounded function on [a, b]. Then
(a) u)f(51) < u)f(52) for all 61 < ds.
(b) If [ exists and is bounded, then ws(0) < M¢ for some M.
(c¢) If f is Lipschitz of order a, then w(6) < M6 for some M and all 6 > 0.

Proof. For (a), note that we have |[x — y| <61 < g forall x,y € [a, b].
For (b), from the mean value theorem, we have that if [x — y| < ¢, then

1f () =D =1 () x =y < Mlx -yl <M

for some ¢ € [a, b] and some M > 0.
For (c), we have that

|f(x) _f(y)| < M|x—y|(’ < MsY

for |x — y| < 4. [ |

Lemma 4.14

Let f be a bounded function on [a, b] and § > 0. Then
(@) wf(nd) <nwys(o) forall n € N.
(b) wr(A0) < (1+Dwy(9) forall 1 > 0.
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Proof. For (a),let x < y be such that |x — y| < nd. We can split [x, y] into n intervals of length
at most ¢, say [z0,2z1], ..., [2n-1,2x]. Then |z; — z;—1| < ¢ for all i and

1£G) = FOI < D1 @) = Fzin)] < nws(6).
i=1

For (b), let n € N be such thatn — 1 < 1 < n. Then

wr(A0) < wp(nd) <nwy(6) < (1+Dwyr(9).

Theorem 4.15
For any f € C([0,1]), the Bernstein polynomial B, (f) satisfies

3 1
1B, (f) = flleo < wa(%)

Proof. By lemma 4.14, setting § = 1/4/n and 1 = \/n |x - % , then

(:)xk(l —x)" k< zn:wf(x - %‘)(Z)xk(l —x)"k
k=0

X — %D (Z)xk(l —x)"k

n\ n—k

(k)x (1-x) }
L [ 12, , . 1/2

k n—k k n—k

i (s S

X — —

n

1F() = Buf ()| < )

k=0

Skl

k=0

< wy %) {1+\/ﬁi
k=0

<wy %) 1+\/Z(Zn1

k=0

co -3

The fourth inequality follows from the Cauchy-Schwarz inequality. [

) - f(f)

n

k
x__
n

Theorem 4.16

Let X be a metric space and Y C X be a compact subset. Then for any f € X, there exists a
p* €Y such that d(f,p*) <d(f,q) forall g €Y.

Proof. Let d* be the shortest distance from f to Y, i.e., d* = inf ey d(f, g). Then there exists
a sequence g, € Y such that d(f,q,) — d*. From the compactness of Y, there exists a
subsequence ¢,, such that g,, — p* € Y. We claim that p* is the desired point. Indeed, for
any € > 0, there is an N such that d(f, g, ) < d* + € and d(q,,, p*) < e for all k > N. Then

d(f,p") <d(f,qn) +d(qn,.p") <d" +2€.
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Since € is arbitrary, we have d( f, p*) < d*, which completes the proof. [ ]

Theorem 4.17
If X is a strictly convex Banach space, and Y is a convex compact subset of X, then for any

f € X, there exists a unique p* € Y such that || f — p*|| = inf ey || f — ql|.

Proof. The exsistence of such p* follows from theorem 4.16. Denote the shortest distance
from f to Y by d*. To show that p* is unique, suppose that there are two such points p] and
p5- Then by the convexity of Y, % p1+ % Py € Y and from the strict convexity of X,

1 * 1 * *
<2r-pill+ 2l il = o

1, 1.,
"f_§p1_§p2

This contradicts the minimality of d* and thus p* is unique. [

Definition 4.18
A function g on [a, b] satisfies the equioscillation condition of degree n if there are n + 2
points a < xg < X1...<Xp41 < b such that g(x;) = (=1) ||g|| fori=0,...,n+ 1.

Theorem 4.19 (Chebyshev Equioscillation theorem)
Let f € Cla,b] and p € P, be the polynomial of degree n. Let r = f — p. Then r satisfies the
equioscillation condition of degree n if and only if || f — pll < I|f — ¢l for all g € P,.

Proof. First assume that r satisfies the equioscillation condition of degree n. If p is not the
best approximation to f in P,, then there is ¢ € P, such that ||f — (p + @)l < IIf = Pllco-
This implies that ||r — ¢||, < ||7]l- By the equioscillation condition, |r(x;) — g(x;)| < |r(x;)|
for alli = 0,...,n + 1. This means that ¢ has the same sign with r at each x;, so ¢ must
change sign n + 1 times. This contradicts the fact that g € P,,.

Conversely, suppose that p € P, is the best approximation to f in P, in uniform norm.
Let R = ||r||. Since r is uniform continuous on [a, b], we can split [a, b] into subintervals
[t;,t;+1] such that |r(x) —r(y)| < R/2 for all x,y € [t;,t;+1]. Now observe that if [#;,#;4+1] con-
tains a local extremum of r, then » must have same sign in [#;, ;,1]. Denote the intervals by I,
and rearrange them so that » has maximum in /, ..., I, and minimum in Iz 41, . . ., Jg,+k,-
The rest intervals are denumerated by I, +ky+1, - - -, [k, +ko+ks- BY construction we see that
the intervals with extremum points are disjoint.

We claim that k1 + ko > n + 2. Assume that k1 + ko < n + 1. Consider the polynomial

k1+k2—1

g =+ [] -2
i=1

where z; are the points chosen withmax I; < z; <min [;;1 fori = 1, ..., k1+ko—1. Notice that
q(x) # 0for all x lyingin [; fori = 1, ..., k1 + ko. We select the sign of ¢ such that ¢ has the

same signasrin [; fori =1,...,k; + ko. We show that p + 1¢g gives a better approximation
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than p for some A > 0. Let § = UM1+%2 1, and N = UM1+*2*%s 1. Then for x € S,

i=1

l=k1+k2+1 i

|f(x) = (p(x) + 4g(x))| = [r(x) = Ag(x)| < R — Amin [g(x)| < R.

And for x € N,

|f(x) = (p(x) + 2g(x))| = [r(x) = Ag(x)| < R + Amax |q(x)| < X gl <R

2

by taking A = ﬁ. This contradicts the assumption that p is the best approximation in P,,.

Hence k1 + k9 > n + 2. Since p lies in P,, p has at most n interior extremum plus the two

endpoints; we have n + 2 extremum points, yielding the equioscillation condition. [

Remark

The Chebyshev equioscillation theorem gives us a way to compute the best polynomial ap-

proximation to a function in uniform norm. The approach is as follows. Consider the ap-

proximation polynomial p(x) = X} _, ayx* and the error h = ||f — p|l.. Our goal is to find

the coefficients aj and the error h as well. The Chebyshev equioscillation theorem gives the

extremum points X, . . . ,Xp+1 Such that f(x;) = (=1)
1 X0 xg -1
1 X1 )C’l1 1
1 xpe1 o0 X0 (=D

Since x; are unknown, we need to guess a set of x;

iteration continues until || f — pllo = h.

4.2. Fourier Series

Definition 4.20

The Fourier series of a function f is given by

'h. Then we have the system of equations

OV [ Fxo)
ai

_ f(x1)
a :
i f(xns1)

and solve the system of equations. The

Sf(x) = % + Z ay cos(kx) + by sin(kx),
k=1

where the Fourier coefficients a; and by are given by

ay = %[ﬂf(x) cos(kx)dx, by =

Or, alternatively,

[S¢]

%/_: f(x)sin(kx)dx.

Sf(x) = Z cre*,

k=—00
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where the Fourier coefficients c; are given by

1 4 ,
Ck = —/ f(x)e *dx.
2 J_,
Definition 4.21
The Truncated Fourier series of a function f is denoted by
4 N N .
Snf(x) = EO + > aycos(kx) + by sin(kx) = Z cre™ .

k=1 k=—N

Proposition 4.22
Let ay and by be the Fourier coefficients of a function f. Then

(@ If f € LY, |ai|,|bi| < C|If|l; for some constant C > 0.
®) If f € L%, |ag]|, |bk| € C || f]l for some constant C > 0.

Proof. To see (a), compute that

1 /" 1 /"
wl <3 [ 1r@lleostenlar < 3 [ 1rlds =ciifl,

and similarly for by. For (b),

1 /" 1 /"
<3 [ 1lleos(knldr < 3 [ flads =210 = C Il

The proof for b; is analogous. [
Lemma 4.23 (Riemann-Lebesgue I)

Let f € L[a,b). Then
b

lim f(x)e ™ dx = 0.
n—oo a

Proof. Let € > 0. Since f € L[a, b], there is a step function g such that ||f — g||; < €. For

/E cos(nx)dx /E sin(nx)dx

as n — oo. A step function is a linear combination of characteristic functions of intervals,

and thus ’/ﬂb g(x)e‘i”xdx‘ — 0 as n — oo. Therefore,
b .
/ g(x)e "™ dx
a

b .
/ f(x)e "™ dx
—0

any interval E,

2n
< + <——0
n

b
/ yE(X)e ™ dx

< +

b
/ (F () = g(x))e ™ dx

b .
/ g(x)e ™™ dx
a
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asn — oo, |

Definition 4.24
The space of piecewise continuous functions on [a, b] is denoted by PC|a,b]. The symbol
PC"[a, b] denotes the space of functions having continuous derivatives up to order n— 1, with

the n-th derivative being piecewise continuous.

Proposition 4.25
Let f € PC'[-n,n] and

fx) = % + ) ay cos(kx) + by sin(kx).

k=1
Then -
f(x) = Z —kay sin(kx) + kby cos(kx).

k=1
Proof. Differentiation term by term gives the desired result. [
Remark
If f € PC"[-n, xt], then

Il /Il pcn
el 1bel < =2,

where || fllpcn = Sz |9
Definition 4.26
Let f be a function on R. The right-limit and the left-limit of f at x are defined by

FT) = Tim fGe+ ), () = lim f(x ).

Definition 4.27
A kernel is a function k : X X X — R such that

(@) k(x,y) =k(y,x) forall x,y € X,

(b) For finitely many points x1,...,x, € X and scalars ay,...,a, € R,
n n
Z Z aiajk(x,-,xj) > 0.
i=1 j=1
Definition 4.28

The Dirichlet kernel is defined by

N

1 .
Dy(x) = o Z et
k=—N
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Remark
The Dirichlet kernel can be simplified to

sin((N + 1/2)x)
27 sin(x/2)

Dy(x) =

To see this, note that

—i(N+1/2)x

G(N+1/2)x _

27Dy (x) (™ — 1) = ol (N+Dx _ =iNx _

eix/2 _ e—ix/2

And thus,
sin((N + 1/2)x)

Dw(x) = 27 sin(x/2)

Some other properties of the Dirichlet kernel include Dy(—x) = Dy(x) and f_ 7; Dy (x)dx = 1.

Definition 4.29
Let f,g : X > R The convolution of f and g is defined by

(f *g)(x) = /X = )g(y)dy.

Proposition 4.30
For any 2n-periodic function f € PC,

SNf = DN * f
Proof. Compute that
N N 1 Vs
— ikx _ - —iky ikx
Snf(x) = Z cre™ = Z o [ﬂ f(y)e P dye

k=—N

k=—N
[ 10152 Y e ay = [ pDute -y = 0y + ).
- k=N -

Theorem 4.31 (Dirichlet-Jordan)

Let f be a 2n-periodic function and piecewise Lipschitz. Then

fON) +f0)

Hm Sy f(x) = 3

In particular, if f is continuous at x, then

dm Sy f(x) = f ().
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Proof. Since f is 2rm-periodic,

Snf(x) = / Dy (x - y)f()dy = / D) f(x - y)dy

/4

x 0

= ‘/0 DN(y)f(x—y)dy+‘[ Dy(y)f(x—y)dy

= / Dn(y)f(x —y)dy + / Dn(=y)f(x +y)dy
0 0

_ /0 Dy()(f(x = y) + f(x+))dy.

Notice that 1 i
U+ 160 = [ a6 + 500 dy.

Thus for given x, we have

<

‘ S0 - LI

/0 Dy (f(x+y) - f(x+))dy'

+

/0 Dy(y)(f(x—y)— f(X‘))dy‘ :
We claim that .
/0 D) |f(x+y) - f@)|dy — 0

as N — oo and the other integral is similar. There is a 6 > 0 such that f is continuous on
[x,x + 6]. Thus f is uniformly continuous on [x,x + ¢], and |f(x + y) — f(x*)] < Cy for some
constant C > 0 and y € [0, §]. Then

) ) )
/ |DN<y)||f(x+y>—f<x+>|dysc/ leN<y>|dysc/ dy = Cs,
0 0 0

because |Dy(t)| < 1/|t|. On the other hand,

sin((N +1/2)y)
sin(y/2)

1 T
: m/{s sin((N +1/2)y)g(y)dy — 0,

|f(x +y) = fF(x™)|dy

/6 |DN<y)||f(x+y)—f(x+)|dys%/é

as N — oo by the Riemann-Lebesgue lemma, where g(y) = |f(x + y) — f(x*)] is a continuous

function on [, 7]. Hence we have

’ /0 DN(Y)(f(X+y)—f(x+))dy’—>0 25 N > oo

We now see that
Fx) + f(x7)

0 N .
5 — as N - o

'SNf(X) -
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The pointwise convergence is achieved whenever f is continuous since f(x*) = f(x7)

f(x).
Definition 4.32
The series oy f is defined by

1 N
onf () = 57 D Suf ().
n=0

Remark

The series oy f is the Cesaro’s mean of the Fourier series of f.

Definition 4.33
The Fejer kernel is defined by

1 N
Fy(x) = 55 ) Di®).
k=0

Remark

The Fejer kernel can be simplified to

Fx) = sinz(%x)
Y 27(N + 1) sin?(x/2)
To see this, note that
_ 15 1 Ssin((k+1/2)0)
Fn(t) = 51 ;}Dk(f) - 2n(N+1) Z sin(1/2)
N

T 2n(N+ 1)1 sin2(7/2) D sin((k +1/2)0) sin(1/2)

) k;/O
" 2n(N + 1) sin’(1/2) ;)COS('“) — cos((k + 1))

1 siHQ(%t)

(1 —cos((N+1)1)) =

" 47(N + 1) sin2(1/2)

Some other properties of the Fejer kernel include that if f = 1, then

onf = / " Fy(odx = 1,

and that Fy(—x) = Fy(x), Fy > 0. Also,

N T T
s =g 2 [ Prte=nroar= [ (
=07 -

s
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N
1 1 ZDk(x - y))f(y)dy = Fy * f(x).
k=0



Definition 4.34
Co, denote the space of 2n-periodic continuous functions. C;‘ﬂ denotes the space of 2r-periodic

functions having continuous derivatives up to order k.

Theorem 4.35 (Fejer)
Let f € Cor. Then onf — [ uniformly.

Proof. Let € > 0. There is a § > 0 such that | f(x) — f(y)| < € whenever |x — y| < §. Observe

that if |7| > ¢, then
1

-0
27(N + 1) sin%(6/2)

FN(I) <

as N — oo. Hence

lowf(x) = f(X)] =

[ Fr(x— ) f()dy - f(x)] < / Fr(x— ) 1f(y) = F()] dy

S/ Fy(x—y) If(y)—f(X)ldy+/ Fy(x=y) |f(y) = f(x)] dy
|x—y|<é

O<|x—y|<m

Se/_ FN(x—y)dy+2||f||oo/ Fy(x —y)dy

T O<|x—yl<n
-0

- -0
27(N + 1) sin?(6/2)

=e+2|fllo

as N — oo. [ ]

Definition 4.36

The trigonometric polynomial of degree N is a function of the form

TPy(x) = ) aycos(kx)+ by sin(kx).

N
k=0

The trigonometric polynomial space is denoted by TP = UyT Py.

Theorem 4.37
Under L2[-n,n], PCoy C TP.

Proof. Since continuous functions are dense in PCsy,, it suffices to show that continuous func-
tions can be approximated by trigonometric polynomials. Let f € Co,. By the Fejer theorem,
onf — f uniformly. Since oy f is a trigonometric polynomial, f can be approximated by

trigonometric polynomaials. |

Definition 4.38

The best approximation error of a function f by a trigonometric polynomial is defined by
En(f) =infperpy 1P = flleor

Definition 4.39
For f,g >0, f < g if there is some constant ¢ > 0 such that f < cg.
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Theorem 4.40
For f € Cop,

ISnS = flleo S (1 +10g N)En(f).
Proof. Recall that Sy f = Dy * f. Then

T

< / Dy =W FOdy < [1fll / Dy (1)) dt.

ISx /(0] = ‘ / D (x = ) f(y)dy

v/ =T
Observe that L lsin((N + 1/2 oN+1 1
t
|IDn(D)] = 5= sm((. +1/2)0) <min|22 2 - U
2n sin(t/2) 2 2|t
Thus
d 2N +1 1
/ |DN(t)|dtS/ dt+/ —dt
_x lil<n/(2N+1) 27 x/@N+1)<lt|<n 2 |]
2N+1 2n 1
< 2-=log(2N +1) < (1 +1logN).
S o any1 T2 glsN+ 1) s (1+logh)

Now let g* be the best approximation to f in TPy. Notice that Syg* = ¢* and Sy is a linear

operator. Then

ISNF =@ lleo = 1SN f =SNG " lleo < ISNIIIS = ¢l S (1 +1og N)En(f)

as desired. ]

Theorem 4.41
If f € Cop is L-Lipschitz, then

@ llowf = flle s 2ENT,
®) ISy f = fllo, < LHEN
Proof. For (a) we have
on f () = (Fy * )(x) = / Fy(x - y)f(y)dy.

And thus

o f () — F()] < / Fx(x =) f() = £l dy

_ /_”Fwo F (= 1) — F()] du < L[FW) el d.

/s /4

Observe that

2 N+l
1 S (Tu) . [N+1 big
|Fn(u)| = < { }

27(N + 1) | sin2(u/2) 27 " 2(N + 1) |ul?
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Then

d N+1
L/ FN(u)|u|du§L/ |u|du+L/ — L Jul du
- ul<r/(N+1) 27 ) (N+D)<lul<r 2(N + 1) |ul

N+1 L
SL/ T du+ —" . 2log(N +1)
ul<z/(N+1) 27 N +1 2(N+1)

Ln log(N+1) 1+IlogN
= L7T s L’
N+1 N+1 N

proving (a).

For (b), from theorem 4.40 we have

i 1+ log N)2
IS5F = Fll (L +1og NN (/) S llowf — [l < g,
proving (b). )

Definition 4.42
The Chebyshev polynomials are defined by T,(x) = cos(ncos™'(x)) for n = 0,1,... on
[_1, 1]

Remark
The Chebyshev polynomials have the following recurrence property,
Tpi1(x) = cos((n + 1) cos 1 (x)) = cos(n cos 1 (x)) cos(cos™t(x)) — sin(n cos 1 (x)) sin(cos *(x))
1 1

= xT,(x) — 3 cos((n — 1) cos 1 (x)) + 3 cos((n + 1) cos™(x))

= T, (x) = STo1(6) + 5T ()

= Xlp(X 2n—1x 2n+1x-
Then

Tn+1(x) = 2XT,,(X) - Tn—l(x)-

Immediately we see that T,,(x) € P,[-1, 1].

Proposition 4.43

{T,},~, forms an orthogonal set with respect to the inner product

1
R v

—x2

Proof. Using the change of variable x = cos(6), a direct computation gives

dx _
Vie
= %/0 cos((m + n)8) + cos((m —n)0)do = 0

1 T
(T, Ty = l/ cos(m cos™1(x)) cos(n cos™ (x)) 1/ cos(m@0) cos(nd)do
T J-1 T Jo

for m # n. [ ]
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Proposition 4.44
Let E[—n, rt] be the subspace of C[—1, 1] consisting of all even continuous function on [—n, x].
Consider the mapping ® : C[-1,1] — E[-nr,n] defined by ® : f — f ocos. Then the

followings are true.
(@) ® is well-defined and is an isomorphism.
(b) (®T,)(0) = cos(nb).
(c) ©(P,) =E[-n,n]NTP,.
(d) ® isisometric.
(@) En(f) = En(®f) forall f € C[-1,1].
O (f, &)y =(P®f, ®g) forall f,g € C[-1,1].

Proof. For (a), since (®f)(—x) = f(cos(—x)) = f(cos(x)) = (Df)(x) and both f and cos
are continuous, f o cos is also continuous, we conclude that ®f € E[-nr, 7] and ® is well-
defined. Now if ® f = 0, then || f||, = [|®f]|l., = 0 and thus f = 0. Hence ® is injective. For

1 is continuous. Thus @ is

the sujectivity, let g € E[-m,n]. ®(g o cos™!) = g and g o cos™
surjective.

(b) is immediate from the definition of ®. (®T},)(6) = cos(n cos 1 (cos(6))) = cos(nb).

We now prove (c). From (a) we have ® is an isomorphism. Also, from (b) we have that
®(P,) C TP,. For any even trigonometric polynomial p € TP,, p(x) = >} _, ax cos(kx). Then

consider g = 37 _, axTx. Then

n n n

(@g)(x) = " ai(Tx o cos)(x) = " ay cos(k cos™(cos(x))) = Y ay cos(kx) = p(x).
k=0 k=0 k=0
Hence TP, c ®(P,) and (c) is proven.
For (d),
®fllc = sup [f(cos(x))|= sup | |f O] =11flle -

x€[-m,m] xe[-1,1

(e) is an immediate consequence of (d).
Finally, for (f), by changing the variable x = cos 6 and the fact that f(cos(6))g(cos(6)) is

even, we have

dx
V1 —x2

showing (f). [

1 b
Fogyr=7 [ s = oo [ leos(o)seostodo = (@, @),

Theorem 4.45
If f € C[-1,1] admits a Chebyshev series

0]

f(x) = ZanTn(x)’

n=0
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then

N
k
wf= ) (1= —)axTi > f
e N+1

uniformly on [—1,1]. If f is Lipschitz and Pf, f is the truncated Chebyshev series to f, then
|PSf - £l s (1 +1log N)EN(S).

Proof. Consider the transformation ® : C[-1,1] — E[-n, 7] defined by ® : f — f o cos.

Then from proposition 4.44 we have

1
N+1

N
2. D aicos(j6) = ow(@f)(6).

J
j=0 k=0

N
(@v f)(6) = Z(l -

)ak cos(kB) =
k=0

N+1
By the Fejer theorem,

It f = flleo = 1PN f = @Sl = llown(Pf) = Pflle = O

as N — oo.

To see the second part, suppose that f is L-Lipschitz. Then

|@f () = Pf(B)] < Lcos(a) —cos(B)| < L|a - Bl

since the derivative of cos is bounded by 1. Thus ®f is L-Lipschitz and

IPRf = fll = |@PFf = @f], = ISN(®f) = @flleo S (1 +1og N)En(®F) = (1+1log N)En(f)
by theorem 4.40 and part (e) of proposition 4.44. [

Theorem 4.46 (Jackson)
For f € C[-1,1],

En(/) 5 0. 3)

Proof. Let ¢(0) = Ziv:o ci cos(k@) € TPy, where ¢, € R such that ¢ > 0. For any 27-periodic
f, define ¥ by

1O = o [ F0-080d = (7200,

Next we make the following observations. First, Y1 = 1 where 1 is the constant function
1(6) = 1. Second, ¥ is linear and positive. To see this, note that

Vel +9) =5 [ (f +9)(0-0(d = s + ¥
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for any c € Rand f,g € C[-1,1]. Also, if f > 0, then

Yf@o) = %/_ £(0—1)p(t)dt > 0.

Third, ¥ f € TPy for any f € C[-1,1]. Indeed,
1 T 1 N T
1O = o [ sws@-nar=5-3 [ e cos(k(o -
T J_x 2n =) x
1 N
=— Z By cos(k6) + Dy sin(k6) € TPy
2 —

Wlth T T
Bi= 55 [ rweostknar, and D=5 [ sin(ena
2m J_» 2 J_,

Now we have the last claim that
1 Nrm
Yf— < )1+ —V2-C
1 = Fll < ol )1+ V2= C)

for some constant C > 0, which will be determined later. Since f is uniformly continuous,

1f(@—1)— f(O) <w(f,|t]) <(1+N Itl)w(f, %)

Using the first observation W1 = 1, we have

s - 1= |3 [0 - g@sna

< %w(f, %) [ﬂ 1+ Nt)o(r)de.

Also,

i/ﬂ(l + N|t)p(t)dt =1+ £/7r |t| ¢ (2)dt
2m - 2n -

1 n 1/2 1 T 1/2
< 1+N(—/ & ¢(t)dt) (—/ ¢(t)dt)
21 J_x 2n J_,

1 fr 1/2
= 1+N(—/ lik ¢(t)dr)
2n J_»

by the Cauchy-Schwarz inequality. Notice that

2 2 2
t 2t
- |1 < —7; (1—-cost).

. t
1-cost=2sin>=>2
2

4
2 nx?
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Then

1 /7 172 [~ 1/2 N
—/ (1+N|t)p()dt <1+N —”—/ (1-cost)p()dt| =1+ -—2N2-C.
o J_, o2 ), 2

Thus
Nn

||\Pf—f||MSw<f,%>(1+ . z-c).

Finally, we want to pin down our constant C so that V2 — C is minimized and ¥1 = 1.
We conjecture that ¢(6) = C; |p(0)|2, where p(6) = ZQ’ZO ae’® ay = sin(%ﬂ). Compute
that

N
242
ay +2Cq Aragygs cos(s0).
k=0 s=1 k=0

-1
Take C = (ZkN:O a%) , then

N N-s
o(0) =1+ Z 2C1bgcos(s0), where by = ApQiys.
s=1 k=0

Now

N-1 N
k+1 k+2 k k+1
2b1=Z2sin - ] sin al T =Z2sin 7] sin hl n
N + 2 N +2 N+2 N+2

2b —N_ls'n k+1 sin k + sin k+2
1= My 2" v+ 2™ My+2”

=0
N-1 N-1
k+1 2n 2n 2n
2 2 1
= _ = — C
s (N+2 ) "N+2 (N+2) U= cOS(N+2)
k=0 k=0
Now )
C =2C1b1 = 2cos( )ﬁQ—CSﬁ
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by the Taylor expansion of cos. It now follows from the last claim that

e = Fll < olf, )1+ GVEC) s 0l ).

The proof is complete. n

4.3. Fourier Transform

Definition 4.47
For f € L1(R), its Fourier transform is defined as

Fiy =77 = /}R Fx)e 2 g, D

Remark

The Fourier series coefficients can be viewed as discrete Fourier transform f v {a,},cz, with

1
an:/ f(x)e ZFnx gy (2)
-1

The inverse discrete Fourier transform is then given by

f(x) = Z a,e?™ . 3)
nez
Example
b . b-a ift=0,
)2[(1,17] (l) — / e—2mtxdx — . ' ' f
a ﬁ(e—thb _ e—2mta) lft + 0.

Lemma 4.48 (Riemann-Lebesgue II)
Let f € LY(R). Then f is uniformly continuous on R, satisfying ||f||(><> < || flly, and

lim f(r) = 0.

|t|—>oo

Proof. We first prove the uniform continuity of f. Let r, — f. Then since |e‘2”i’"x f (x)| <
| f(x)|, we may apply the Lebesgue dominated convergence theorem to obtain

lim f(¢,) = lim / f(x)e ZFitnv gy = / f(x)e > gx = f(1).
n—oo n—oo ]R IR

Hence f is uniformly continuous.

To see the second property, we have

|f<t>|=‘ /R F)e 2| < /R £ [e 2 dx = /R £ dx = [1£1y
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for any r € R and thus ||f||oo < I fll;-
Finally, if f = yg where E = [a, b] is an interval, then

f( ) b-a iftr =0,
t) = ) )
%(e—2mlb _ e—2mta) ift # 0.
Clearly f(r) — 0 as |t| — oo. Since step functions are finite linear combinations of such
characteristic functions, the result holds for stpe functions. For any integrable function, we

can find a sequence of step functions f, such that ||, — f||; — 0. Then

[f (1) = fu()] = ’/(f(X) — fu(x))e " dx| < / |f () = fu)ldx = |If = fallL = O
R R

as n — oo. Since f, () is uniformly continuous and f,(r) — 0 as |f| — oo, we have f(f) — 0
as well. [

Proposition 4.49
Let f be the Fourier transform of f.

@ If f € LY(R) and g(x) = xf(x) € LY (R) as well, then f € C1(R) and f'(t) = —2mig(1).
®) If f € LY(R) N CY(R) and f’ € L1 (R), then

(F)(t) = 2t f(1).
Proof. For (a),
1ia 3 1 ; ~2nitx e 2Zmisx _q
E(f(t + S) _ f(t)) — ; Af(x)e—ZHI(t+s)x—e dx = /Rf(x)e_%”x%dx.

Observe that

‘f(X)e_%”%(e””"‘“ ~ 1| s kf)| = lg)] € LYR).

By the Lebesgue dominated convergence theorem,

—-2misx _

%( f+s)- f(z)) = /R J0) i n—— - Lix - ~2ni /}R g(x)e ¥ dx = —2mig(1).

For (b), using integration by parts,

(fIT)(t) = /]Rf’(x)e_zmxdx = f(x)e 2rilx ) + 27rit‘/]Rf(x)e_2””xdx = 2rit ().

Proposition 4.50
Let f € LY(R) and b,t € R. Then
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(@ If g(x) = f(x = b), (1) = e 2™ f(1).
®) If g(x) = ¥ f(x), 2(1) = f(1 - b).
(© If g(x) = f(bx), &(1) = g/ (§)-
@ If f,g € LY(R), then
/ f(g(ndr = / f(0g(t)dt.

Proof. For (a), using a translation,
g(t) — / f(x _ b)e—chtdx — / f(x)e—27r(x+b)ldt — e—27ribt / f(t)e—27rixtdx — e—27ribtf"(t).

For (b), using a translation,

g(l) — / f(x)eZbee—erixtdx — / f(x)e—2rrix(t—b)dx — f(l _ b)
For (c), using a dilation,
I

8(1) = / f(bx)e—Zﬂixtdx _ % / f(x)e—Zm'xt/bdx _ %'}a(b)

For (d), using Fubini theorem,

[iwewar= [ [ rwgweasa= [ [ rweweaa= [ rwaca

The use of Fubini theorem is justified as follows:

/ / £ ()g(1)e2 | dvdt = / (D) dr / F)dx = 111 gl < oo,

since f,g € L*(R).

Theorem 4.51 (Convolution Theorem)
(@) For p € [1,00], if f € LY(R) and g € LP(R), then || f *gll, < Il llgll,-
®) If f.g € LYR), then f+g=f-§.

Proof. We first prove (a). For the case p = oo,

I(f * g)(x)] = / FO)gGe = )dy < 11 gl -

For the case p = 1, by Tonelli theorem,

If gl < / / )8 (x — )] dydx = / / FO) g (x = y)| dedy
- llgll; / O dy = 111 lglls
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For the general case where p € (1,0), with 1/p +1/p’ =1,

p P
IIf*gIIZ=/V = y)g(y)dy dxs/(/ Fx = y)g()ldy| dr

plp’
< / ( / If(x—y)ldy) / P =g dyds

= A1 11+ (@) < AP NPl AN = AN 11 gl

The second line uses the Holder inequality and the inequality in the third line uses the result
for p = 1. Now we obtain that

ILf=gll, =171 lgll,
For (b), using Fubini theorem,

J—

Fesl) = / / £ )g(y)dye 2 dx = / / Flx = y)g(y)e ™ drdy
= [ [ £t mee e - yye iy
- / e (e dy = F(1)3(1).

We verify that (x, y) — | f(x —y)g(y)e 2rixt | is integrable. Indeed,

/ / 1 (x = )g(»)e 2| dydx = / / £ G =) 1g(y)] dedy
=/Ig(y)ldy/If(x—y)ldx=||f||1||g||1<°°

by Tonelli theorem. The proof is complete. [

Definition 4.52

Given € > 0, the Poisson kernel is defined as

1 €

Pe(x) = ax2+e2’

Proposition 4.53
Let P, be the Poisson kernel. Then

(@) Pc(x) =0 forallx € Rand e > 0.
(b) For any e > 0,

/Pe(x)dx =1.
(¢) sup, ||Pclly £ M < oo for some M > 0.

(d) For any given n > 0,
lim P.(x)dx = 0.

€20 Jx|>p
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Proof. (a) is trivial. For (b),
1
/ Pe(x)dx = =€ 2e%n = 1.
T

(c) follows immediately from (b). For (d), let > 0 be given. Then

1 2 < 1 2e1l
[ orwa=t [ [T 2R (1)) 0
|x|>n T Jix|sn X° + € nJ, x“+e€ moe\2 €

ase — 0. [ ]

Remark
The properties (b)-(d) are sometimes referred to as the good kernel property. (d) is used to
approximate the dirac § function.

Lemma 4.54
Let P, be the Poisson kernel. Then

(a) If f is uniformly continuous and bounded on R, then ||P. * f — f||,, = 0as e — 0.
@) If f € LP(R) where 1 < p < oo, then

|Pe*f—fll, >0 ase— 0.

Proof. For (a), we shall proceed with a similat approach in Fejer kernel and Dirichlet kernel.
Write

Pex f(x) — F(x)] = ‘ / Pex =) f () dy - f(x)

_ ‘ [ =000 - @y
< / Pe(x =) If () = F(x)] dy.

By the uniform continuity of f, for any 6 > 0, there exists > 0 such that on [x — n,x + 1],
| f(y) = f(x)] < 6. Also, by (d) of proposition 4.53, we can choose € small enough such that

/ P.(x —y)dy <6.
lx=y|>n

Then we have

Pex f(x) - f()] < /

lx—yl<n

<5 / Pex = y)dy +2 1 fll. / Pe(x - y)dy
lx=y|<n [x=y|>n

<SS+ 2 flled =81+ 2| flle)

Pe(x—y) If(y)—f(X)Idy+/ Pe(x =y) |f(y) = f(x)|dy

lx=y|>n

by the boundedness of f. Since § is arbitrary, we obtain that ||P. = f — f||., — 0 as € — 0.
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For (b),

p
dx

1Pex f— fI = / | / (00 = f(x = )Pe(y)dy
p

< / ( / I(f(x)—f(x—y))lPe(y)dy) dx
< / / £ () = £ = D)IP Pe(y)dyd

by Jensen inequality with du = P.(y)dy and proposition 4.53 (b). Next, by Fubini theorem,
letting g(y) = [ |f(x) = f(x = y)I” dx,

[ [1r@ == eanaras= [ [176)= £ =1 petsyandy
= [P [ 1700 - px - sy
= [ Pe)sOIdy = (e g)(0) - 0
as € — 0 by (a). Thus we conclude that

I1Pe s f—fll, >0
ase > 0forany 1 < p < oo, [

Theorem 4.55 (Fourier Inversion Theorem)
Suppose f, f € LY(R). Then

1w = [ foed
for almost every x € R.

Proof. Consider

Ie(x) = / F(£)e2melil p2mitx gy

Letting g.(t;x) = e 2711l e2m1X e have

Io(x) = / ge(1;) f(1)dt = / F)ge () di

since g, is clearly integrable and this follows from proposition 4.50 (d). Compute that

o0 0
gAe(é‘:;X) — / e—27re|t|827ritxe—27ri§tdt — / eZm‘(i(x—g)—e)dt + / e27rt(i(x—§)+e)dt

0 -0

-1 1 1 €

R TP ps s e ey gty p S Rk
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Thus
/ Fge(t5x)dt = / FOPL(x - 1)dt = (f * PO)(x).

It follows that |P. * f — f||; — 0 as € — 0 by lemma 4.54 (b). It follows that by theorem 2.25
there is a subsequence /, (x) — f(x) almost everywhere. On the other hand,

IE(X) — / f(t)e—Zne|l|e2nitxdt N / f(l)€2”itxdl
as € — 0 by Lebesgue dominated convergence theorem since

‘f(t)e—ZN6|t|e27ritx

<|f()| e LYR).
Thus
1 = [ foea.
This completes the proof. u

Remark

We may also write

F(x) = f(=x).

Definition 4.56
If f € L2(R), we define its fourier transform as

N
7= lim / ey

Theorem 4.57 (Plancherel)

For f € L2(R) n L1(R), f

5 = 11l
Proof. Directly write
1712 = / F() 2 dx = / F@)F@dr = / F (=) F(n)dx
- [ feFEna= [ fofwod= [1fof a- |7

The second equality in the second line follows from proposition 4.50 (d) and the following
fact:

Fn () = / Flox)e 2 gy = — / ey = / 7@ - e du = 1(0),

where we have used the change of variable u = —x. [ |

Definition 4.58
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We denote the fourier transform operator as
710 = [ feia
R
for f € LY(R). If f € L2%(R), we define

N
Ff() = lim /_ N f(x)e 2 dy

instead.

Remark

From Plancherel theorem, it is immediate that ¥ is a bounded linear operator.

Definition 4.59
The Schwartz space S(R) is the space of all functions f € C*(R) such that

sup |kamf(x)| <
xeR

for all k,m € N, where D™ is the m-th differentiation operator.
Proposition 4.60
Let S(R) be the Schwartz space.
(@) S(R) is a vector space over R.
®) If f € S(R), then x* ™ (x) € S(R) for all k,m € N U {0}.
(¢c) If f € S(R), then f € LP(R) forall p > 1.

Proof. For (a), we check that S(R) is closed under addition and scalar multiplication. Let
f>g € S(R) and ¢ € R. Then cf + g is also smooth and for £,/ € N U {0},

sup [v* (¢ f + )V (x)] < lel sup x|* | £ ()] + sup [x*g ¥ ()| < o0
xeR xeR xeR

by the definition of Schwartz space. Then cf + g € S(R), so S(R) is a vector space over R.
To prove (b), we only need to show the following two facts: first, for any f € S(R), xf(x) €
S(R); second, for any f € S(R), f'(x) € S(R). Suppose that f € S(R). Then for any

k,l € NU{0},
L
[l

by the Leibniz formula. Also,

< sup xk+1f(l)(x)‘ + nsup xkf(l_l)(x)‘ < oo

sup [ (xf ()" = sup
xeR xeR

xeR xeR

sup xk(f'(x))(l)‘ = sup ‘xkf(”l)(x)‘ < 0.
xeR xeR
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Thus x f(x), f'(x) € S(R). In general, the function of the form x* V) (x) € S(R) can be proved
by using the above two facts finitely many times.

For (¢), let E = [—1,1]. By the smoothness of f, we know that there is some M such that
sup,cr | f(x)| < M. Also, from the definition of Schwartz space, sup,.r |x2 f (x)| < C for some

constant C. Then

[irwra= [irwra [ ireora
2 p
=2M?P +/ it

2 dx
1
<2M?P + CP —2dx=2M”+2C”<oo.
Ec X

Thus || f||, < coforall p > 1 and p # co. We check that f is bounded on R. By the continuity
of f, we have that f is always bounded on a compact set. Now if f does not vanish at infinity,
then there is some § > 0 and a sequence x, such that |x,|] — oo and |f(x,)| > 6. Then
Sup,cg X f(x)] > d sup,cgr |x| = oo, posing a contradiction. Thus f vanishes at infinity. We
can find some compact interval E such that sup,.g |f(x)| > sup,cgc |f(x)|. Then by the
extreme value theorem, f is bounded on E and hence on R. We conclude that f € £7(R) for
allp > 1. [

Proposition 4.61
Let S(R) be the Schwartz space. If f € S(R), then f € S(R).

Proof. To see this, let f € S(R) be given. From proposition 4.60 (b), we know that f and
g(x) = xf(x) € S(R) ¢ LY(R). Thus f € CY(R) and f'(tr) = —27ig(r). Since g € S(R) C
L(R), we can repeat the argument to obtain that f € C2 and f”(r) = (-27i)2G(t), where
G(x) = x2f(x). Apply the same argument repeatedly, we have that f € C*(R) and ) (¢) =
(—27i) h(t), where h(x) = x' f(x) for all I € N U {0}. Also,

sup
xeR

xkf(l)(x)' = sup |xk(—27ri)lﬁ(x)| < (2n)' sup |xkfz(x)| < o0,
xeR x€eR

The last inequality follows from the fact that 7 € S(R) ¢ £!(R) and the Riemann-Lebesgue
lemma guarantees that & vanishes at infinity. We conclude that f € S(R) implies f €
S(R). [

Proposition 4.62
S(R) is dense in LP(R) for 1 < p < oo.

Proof. Since continuous functions with compact support are dense in £”(R), it suffices to
show that S(R) is dense in the space of continuous functions with compact support. Without
loss of generality, we can assume that f is supported on [—a, a] for some a > 0. By the

Weierstrass theorem, we can find a polynomial g such that ||f — ¢g||., < €/2. Consider the

129



function )
e n*-a®) if |t| <a

$n(t) = .
0 if |t] > a.

Note that ¢, — x(-4.«) pointwisely as n — oo and bounded by 1. We verify that ¢, € S(R)
for all n € N. Indeed, for any k,! € N U {0}, since D¢, will result in

1
tleqﬁn(t) =r(t;n, k,l)e nt*-a®

on [—a, a] for some rational function r(z;n, k, [) having singularities only at r = +a, we have
that

sup |tle¢n(t)| < 00,

teR

Hence, ¢, € S(R) for all n € N.
Now it follows from proposition 4.60 (b) that g¢,, € S(R) by extending the polynomial ¢
on R. Then

/|f—CI¢n|pdﬂ=/_ If—q¢n|”dﬂé2”‘1(/ If—ql”dﬂ+/_ Iq—q¢n|pdu)

a —a a

a
< 2”_1(2516” +/ lg — qoul” d,u) -0

a

asn — oo by the Lebesgue dominated convergence theorem using |¢ — ¢¢,|” — 0 pointwisely
a.e. and |qg — g¢,|’ < 2P|q|” is integrable. The last inequaltiy comes from the convexity
(x/24y/2)P < xP + yP for x,y > 0 and p > 1. We conclude that S(R) is dense in £L”(R) for
1<p<oco. |

Definition 4.63
A linear operator T : H1 — Ho is said to be unitary if

(a) T is invertible.

@) T fllg = lflly for all f € Hi.

Proposition 4.64
Let F be the Fourier transform operator on L?(R).

(@) F is unitary on L2(R).
® Fi=1

Proof. (a) is directly from the Plancherel theorem. For (b), using proposition 4.61,
FAf(t) = F2f(-1) = f(0),

by the Fourier inversion theorem for Schwartz functions. Since ¥ is unitary, it is also a

bounded linear operator, and hence a continuous operator. It now follows from proposi-
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tion 4.62 that for any f € £2(R), there is a sequence f, € S(R) such that

Ifu = fllz = 0.

Then
FAf(@) =7 lim f,(r) = lim F4£,(1) = lim £,(r) = £(2)
for any f € £2(R) by the continuity of 7.

Example

We can use the Fourier transform to solve some PDEs. Consider the Laplace equation

VZ.u=0 foru:]R2—>]R,x€]R,y>O,
u(x,0) = f(x) forxeR.

Apply the Fourier transform in x direction, the original PDE becomes

4n%t%0(t,y) + dyy(t,y) =0 forteR,y>0,
a(1,0) = £(1) fort € R.

Fix t, conjecture that ii(t,y) = A(t)e 2"y + B(¢)e*" Y. Then we have
i1, y) = A(r)e”?mD,
A(t) = f(1).

Since
a(t,y) = f(1)e ™ = f(0)Py(r) = F* Py(1),

we obtain
u(x,y) = f = Py(x),
liIny—>0 u(x,y) = f(x).
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5. Unbounded Operators and Spectral Theory

5.1. Closed and Densely Defined Operators

Definition 5.1
Let {M,} Cc B(X,Y) be a sequence of bounded linear operators. M, converges strongly if for
any x € X, ||Myx — y|ly — 0 for some y €Y.

Proposition 5.2
If {M,} c B(X,Y) converges strongly, then thereisan M € B(X,Y) such that |M,x — Mx||y —
0forall x € X.

Proof. Set Mx = lim,_,o, M,x for all x € X. We check that M € B(X,Y). Linearity is trivial,
we check the boundedness. Let f,(x) = |[[M,x|ly. Then f, is sub-additive and f,(ax) =
|a| fu(x) for all @ € R. If x; — x,

JoGxi) = IMuxielly = IMxilly = fu(x)

for any fixed n as k — oo; f,, is continuous. Now for any fixed x € X, sup,, f,(x) = sup,, ||M,x|| <
C(x) by the strong convergence. It follows from the uniform boundedness principle that there
is Cp < oo such that |f,(x)| < Cy ||x||y for all n. Thus

[Mx|ly = lim [[Myx|ly < Co [lx|lx -
n—o00

Hence ||M|| < Coand M € B(X,Y). [

Definition 5.3
A sequence {M,} C B(X,Y) converges weakly if for all x € X, M,x N y €Y for some y.

Proposition 5.4
If {M,} c B(X,Y) converges weakly, then there is an M € B(X,Y) such that M,x 5 Mx for
all x € X.

Proof. Set Mx = lim,,_,o, M,,x for all x € X. We check that M € B(X,Y). Linearity is trivial,
we check the boundedness. Without loss of genrality, we can assume that ||x||y = 1. Observe
that {M,x} C Y is a weakly convergence sequence and hence weakly sequentially compact;
by proposition 2.77, it is bounded. Thus there exists C < oo such that ||[M,x||y < C = C ||x||
for all n. Taking the limit, we have | Mx||y = lim,_,. [|M,x|ly < C||x||x. Hence M € B(X,Y).

Lastly, we check the weak convergence. Indeed, for any ¢ € Y’, £{(M,x) = €(Mx) for all
x € X since M,x — Mx inY. Thus M,x — MxinY. m

Lemma 5.5
Let X be a reflexive and {T,,} ¢ B(X,Y). Then T, 5T implies T, 57
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Proof. Forallx € X and ¢ € Y’, {T,x — {Tx. We need to show that 7,/ — T'¢ for all £ € Y’.
Note that 7,,¢ € X’ and X is reflexive, so we only need to check 7, £(x) — T'¢(x) for all x € X.
But this is essentially

T,((x) = {T,x — {Tx = T'{(x).

Remark
The statement of the lemma fails if we replace weak convergence with strong convergence, i.e.,
T, — T does not imply T, — T’ in general. Consider X = (*(N) and T, : €2 — (? be the
operator

T,(x1,...) = (x,,0,...)

for x = (x1,x9,...) € {2 Since X is a Hilbert space, it is reflexive. Also, T, — 0 strongly, since
I = OlI3 = bul* — 0

as n — oo for all x € X. However, T, : (€2) — ({2) is the operator defined by { — (T,. For
any € € (€2), €(x) = (x, y¢) for a unique y; € (2. Then T\t(x) = (T,x = (¢, Tyx) = (¥¢)1 - Xp-
Thus

7.0 = (yo)1 - en.

Pick any y; € €2 such that (y¢)1 # 0 will give

7€ = 0] = [(you| # 0.

Theorem 5.6
Let T, € B(X,Y) be a sequence of bounded linear operators such that

(@) ||T,|| € C < oo for all n;
(b) T,x —> Tx forall x € D C X where D is a dense subset of X.

Then T, — T strongly.

Proof. We claim that for any z € X, the sequence {7,,z} is Cauchy in Y. Let € > 0 be given.
Since D is dense in X, there exists a x € D such that ||z — x||y < 5%. Then

1Thz = Tzlly < ITu(z = ))ly + 1T (z = )y + 1Tox = Tux|ly

€
< (ITll+ 1 Tall) - Nz = xllx + W Twx = Tuxlly < 2C - o=+ ITwx = Tuxlly -

Since 7,,x converges, it is Cauchy. Thus there exists N such that foralln,m > N, ||T,x — T, x|ly <

%. Hence

2¢ €
T,z —T,zlly < — + = = €.

Thus {7z} is Cauchy in Y. Since Y is complete, there exists y, € Y such that 7,z — y,. Define
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Tz =y,. We check that T € B(X,Y). The linearity is trivial; for any z € X,
ITzlly = lim [[Tzlly < Cllzlly -

Thus ||T]| < C and T € B(X,Y). Lastly, we check the strong convergence. For any z € X,
IThz = Tzlly = IThz = ylly = 0

as n — oo. Thus 7,, — T strongly. [

Theorem 5.7 (Uniform Boundedness Principle III)
A family of operators {Ty},c; C B(X,Y) satisfies that for all x € X and £ € Y,

[€(Tyx)| < C(x,€) <
for all a € I. Then there exists Cy < oo such that
17ell < Co < o0

forall a € 1.

Proof. Set

Ja(x) = [[Taxlly = ||S€l|J|1P1 [6(Tox)] -

We verify the conditions of the uniform boundedness principle. Let x; — x in X. Then

Tyxy — Toxin'Y. Thus f,(xx) — fo(x) given any a € I. Thus f, is continuous.

Ja(x+y) = ITo(x + Y)ly < [IToxlly + [IToylly = fa(x) + fo(¥).

fo 1s sub-additve. Also, f,(cx) = |[|[To(cx)|ly = |c| [|[Tax]ly = |c| fo(x) for all ¢ € R. Lastly,
given x, g, (€) = |€(Tyx)| is clearly continuous, sub-additive and homogeneous. Also, |g,(£)| <
C(x, ). Using the boundedness assumption and applying the uniform boundedness princi-
ple, we have that

sup g (O)] < C1(x) I€]] -
ac

Now

sup | fo(x)| = sup sup |[£(T,x)| = sup sup |£(Tox)| < supsup|g.(£)| < C1(x).
ael ||e||=1 llel=1 ael el ael

Applying the uniform boundedness principle again on f,, we have that

sup fo(x) < Collx||x -

ael

We conclude that ||T,|| < Cy for all a € I. [ |
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Proposition 5.8
LetT € B(X,Y),U € B(Y,Z). Then UT € B(X,Z) and (UT) =T'U".

Proof. We first show that UT € B(X,Z). For any c € Rand x,y € X,
UT(cx+y)=U{T(cx+y)) =U(cTx +Ty) = cUTx + UTy.
Thus UT is linear. Now we check the boundedness. For any x € X,
1UTxllz < [UIITxlly < NUIIT N x]lx -

Since ||U]||, ||T]| are finite, the boundedness follows.
Now we check the adjoint. For any ¢ € Z’, (UT)’'(¢) = ¢UT = (U'0)T =T'U’¢. [

Definition 5.9
T € B(X,Y) is compact if for any bounded sequence {x,} < X, {Tx,} has a convergent

subsequence in Y.

Definition 5.10
The compact operator space is denoted by By(X,Y).

Proposition 5.11
Let T € B(X,Y) be a compact operator, S1 € B(Y,Z) and So € B(W, X). Then S1T € By(X, Z)
and TSy € Bo(W, Y).

Proof. Let {x,} C X be a bounded sequence. Then {Tx,,} C Y has a convergent subsequence
{Txnk}. Since S1 is bounded, it is continuous; thus {SlTxnk} is convergent in Z. Hence S1T
is compact.

Now let {w,} c W be a bounded sequence. Then ||Sew,||x < ||S2|| [|wxl|lw is also bounded
in X. Thus by the compactness of T, {T'Sow,} has a convergent subsequence. We conclude
that T'Ss is compact. [ ]

Lemma 5.12
Let X be a metric space. If A,, C X is a sequence of separable subsets of X and A,, / A, then

A is separable.

Proof. Since A, is separable, there exists a countable dense subset D, Cc A,. Let D =
U~y Dn. We claim that D is dense in A. Let x € A be given. Since A, / A, there ex-
ists ng such that x € A,,,. Then for any € > 0, there exists y € D,, € D such that d(x,y) < e.
Thus D is dense in A. [ |

Theorem 5.13
Let T € Bo(X,Y). Then T(X) is separable.
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Proof. Consider the closed unit ball B = {x € X | ||x]|y < 1} in X. Since T is compact, T(B)
is sequentially compact. Then T (B) is compact in Y. Because every compact metric space
is separable, T(B) is separable. Write X = | J,nB. Then T(X) = U, T(nB) = U, nT(B). By
lemma 5.12, T(X) is separable. [

Theorem 5.14
Let T € Bo(X,Y) be a compact operator. Then T” € By(Y’, X’).

Proof. Suppose first that Y is separable. Let g, € Y’ be a bounded sequence. T(X) C Y is also
separable. There exists a countable dense subset {y;} C T(X). For y1, {g,(y1)} 1s a bounded
sequence in R. By the Bolzano-Weierstrass theorem, there exists a subsequence g,(,l)} such

that g,(,l) (y1) converges. For yq, extract from {g,gl)} to obtain a subsequence {g,(f)} such that

g,(f) (y2) converges. Continuing this process, we obtain a sequence {g,(f)} such that g,(lk)(y )

converges for all j < k. Pick f,, = g,g”) . Then for any k, f,(yx) converges. Now given any y € Y,
we may without loss of generality assume that y; — y. Then

/() = SO < 1) = oG+ 1 (0) = S O] + 1 fa (i) = S (i)
< (LAl + 5D Ny = yilly + Lfa (i) = fn (il -

Since f,,(y) converges for all k, it is Cauchy; { f,} € {g.} is bounded. Thus taking m,n — oo

and then k£ — oo, we see that |f,(y) — fi(y)| — 0. Hence {f,(y)} is Cauchy.
Next, we show that f; is in fact Cauchy in Y’.

| fu = full = sup [fu(¥) = fin (DI

Iylly=1

For each m, n, there exists y € Y such that ||y||;, =1 and

) = 1 2 5 1= full

But f,(y) is Cauchy and thus || f;, — fu|l — 0 as n,m — oo. Thus {f,} c Y’ is Cauchy. Y’ is
complete, so there exists f € Y’ such that f;, —» finY’. Now f,(Tx) — f(Tx) for all x € X.
Thus

W fo =T fI < NN I S = f1l = O

Hence T’ f, —» T'f in X’. {T" f,} is a convergent subsequence of {T’g,}. T’ is compact.
In general if Y is not separable, T(X) is a separable subspace of Y (theorem 5.13). The
same argument applies and we obtain a sequence { f;,} C Y’ such that

sup |[fu(Tx) = fu(Tx)| — 0.
I7xlly=1
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Thus there exists f on 7(X) such that

sup |[fu(Tx) = f(Tx)| — 0
I7xlly=1

by the completeness of T(X). Then

17" fu =T fl = ”T81”1p_1 |/n(Tx) = f(Tx)| — 0.

Thus 7’ f, — T’ f in X’. Hence T’ is compact. ]

Definition 5.15

Let X,Y be Banach spaces. A linear operator T is said to be densely defined if D(T) =
. _ d

{xeX|TxeY}isdensein X. WedenoteitasT :D(T) C X — Y.

Definition 5.16
d
A linear operator T : D(T) C X — Y is said to be bounded if there is ¢ < oo such that

ITx[ly < clixllx
for all x € D(T); T is unbounded if for all ¢ > 0, there exists x € D(T) such that
ITxly > cllx]lx -

Remark
T is bounded if and only if T is continuous on every point in D(T); T is unbounded if and only

if T is not continuous on every point in D(T).
Definition 5.17
T:D(T) c X > Y isclosed if its graph

G(T)={(x,y) e XxXY |xeD(T), Tx =y}

is closed in the norm II(x, )l sy = Il + Iy lly-

Remark
T is closed if x,, — x in X, where x,, € D(T) and Tx,, — y in Y implies that x € D(T) and
Tx = y.

Definition 5.18
T1:D(T1) c X > Yand Ty : D(Te) € X — Y are linear unbounded operators. We say that Ty
is an extension of Ty if D(T1) € D(Ty) and Tox = Tix for all x € D(T1). Denote it as Ty C To.

Definition 5.19

A linear operator T : D(T) c X — Y is said to be closable if there is a closed extension of T.
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Remark

There are three criteria for T being closable.

(a) thereis a closed extension of T,

(b) m C X XY is a graph of some operators;

(c) forany x, = 0, x, € D(T) and Tx, — y € Y, we have y = 0.
Definition 5.20

Let T be a closable operator. The closure of T is the smallest closed extension of T, denoted
by cl(T).

Remark
The closure of T is well-defined. We can consider the closure of the graph G(T) € X XY. For T
being closable, the closure of G(T) is a graph of some operator T. Since the closure of a graph

s unique, the closure is well-defined.

Example
f :D(T) € 2 > R, where D(T) = span({e, | n € N}) is defined by Te, = n and extended
by linearity. Then T is unbounded. Since T is unbounded, we may take x, — 0in D(T) and

|T(x,)| > € for some € > 0.
Xn

n = — 0 and Tz,=1.

Tx,

Thus T is not closable.

Example

Here is an example of a closable operator while not closed. Let X = ¢ and D(T) = cgo =
{x e (2 | X, =0 forn>someN € ]N}. Then the T : (x,) — (nx,) is a closable operator while
not closed. Let x* = (1,...,5.,0,...) € D(T), then Tx* = (1,...,£,0,...) > (1,1/2,1/3,...) €
£? as k — co. However, x* — (1,1/4,1/9,...) ¢ D(T) as k — co. So T is not closed. T admits
a closure cI(T) : D(cl(T)) — €2 with D(cl(T)) = {x € ? | (nxy,) € fz} and cl(T)x = (nx,) for
all x € D(cl(T)).

Definition 5.21
d d
The transpose of a densely defined operator T : D(T) C X - YisT' : D(T") C Y’ — X' with

D(T') ={m €Y'| thereis { € X’ such that m(Tx) = €(x) forall x € X} .

Remark

The transpose is well-defined since T is densely defined. If {1, {5 are two candidates in X’ such
that m(Tx) = {1(x) = {2(x). Being densely defined implies that {1 = {3 on X.

5.2. Second Order Ordinary Differential Equations

The goal of this section is to present some solution techniques for solving the second order

ODEs that will be intensively used in the next section. The techniques are presnted without
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proofs.
We first introduce the variation of parameters method. Consider the second order ODE
of the form

V' +px)y +qx)y = f(x),

where a < x < b. The first step is to find the solutions of the homogeneous version

'+ px)y +q(x)y =0.

Assume that we can find two linearly independent solutions y;(x) and yo(x). Then a partic-

ular solution of the non-homogeneous equation is

0@, oo
yp(0) = yl”/ Wiy ”/ Worny2) ()

where the Wronskian W is defined as

yi(t) ya(t)

W(vy1, = .
(y1,y2)(2) VD) (0

The general solution of the non-homogeneous equation is

y(x) = c1y1(x) + caye(x) +y,(x),

for some constants ¢1 and c¢s that should be determined by the boundary conditions.
The difficulty of the variation of parameters method is that it is not always easy to find
two linearly independent solutions of the homogeneous equation. If the coefficients are ac-

tually constant, we can consider the corresponding characteristic polynomial
A2 +pl+qg=0.
If the roots A1 and A9 are distinct, then the two linearly independent can be found as
yi(x) = e, ya(x) = e
If A = 11 = A9, the two linearly independent solutions can be found as
yi(x) = e, ya(x) = xe™.

The next method is using the Green’s function. Consider the second order ODE

Y+ px)y +qx)y = f(x).
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The differential operator L is defined as
L=D? +p(x)D + q(x)1,

with boundary conditions

where D is the differential operator and R is a linear operator that represents the boundary

conditions. Suppose that the solution has the form

b
v = [ Gnso
a
where G(x, ) is the Green’s function characterized by the following differential equation

LG(x,t) =6(x—1), X € [a, b],
RG(x,t) =0,
G(t,1) =G(t,1),

G (1, 1) —G(t7,1) = %

where r 1s the function with

L=D(r(x)D) + s(x)
being the result of factorization. This form is called the Sturm-Liouville form operator.
The form of r and s can be found by the following

[DrD)+sly=ry"+r'y +sy=0 & y'+ r—y'+ fy =0.
r r

This means that

pP=— 4=

Sl

So
r(x) = ela PO,

We can rewrite the characterization of the Green’s function as

LG(x,t) =0, X € [a, b],
RG(x,t) =0,

G(tt, 1) =G(t,1),

G (1*,1) = Go(17,1) = exp(— fatp(s)ds).
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5.3. Spectra and Resolvent

Definition 5.22
LetT : D(T) Cc X — X be a closed linear operator. The resolvent set of T is defined as

p(T) ={& € C| (T - &I) has bounded inverse on X} .

The spectrum of T is defined as o(T) = C\ p(T). Ry (&) = (T — ¢I)~! is called the resolvent
operator of T.

Remark
¢ e p(T)ifand only if T — £I has the bounded inverse on X.

Remark
& e ol =C\ p(T) if either T — &1 is not invertible or T — £1 is invertible but has range
smaller than X. If dim X < oo, 0(T) = {1 € C | Tx = Ax for some x € X \ {0}}.

Example
X =Cla,b]. Tu =u and D(T) = C'{a, b]. T is not invertible since T (1) = 0 for every constant

function u. Consider the following domains
e Dy ={ueDT)|ua)=0}
* Dy =A{uecD(T)|u(b) =0},
* D3={ueD(T) |u(a) = ku(d)},
Do ={ueDT)|ua)=u(b) =0}

T; = T|p, are invertible on D; for i = 0,1, 2, 3, but the inverses are different. For example,

(T7) (x) = / ’ v(t)dr.

Theorem 5.23 (Neumann Series)
Let T : X — X be a bounded lienar operator. If ||T|| < 1, then I — T is invertible and

(-1t =>"1"
n=0
Proof. Denote S, = 3} _, Tk. Compute that

n
(I=T)S, = Sy — S,T = ZT" Y
k=0
Take the limit as n — oo:

(I-T)S=I1-lm7T" =]
n—oo

141



since ||T|| < 1 implies that lim, ., 7"*! = 0. Thus (I — T)S = I. By a similar argument,

S(I-T) =1.Hence I - T isinvertibleand (I -T)' =S =Y T"

Proposition 5.24 (First Resolvent Identity)
Let T : D(T) — X be a closed linear operator. The followings are true.

(@) Forall &1,&9 € p(T),
Rr(&1) — Rr(&2) = (€1 — &2)Rr(€1)Rr(é2).

(b) Forall ¢ — &y € p(T),

lim R (&) — Rr (&)

é—éo & —&o
(©) If 1€ — &l < |Rr(€)]17Y, then

= Rr(&o)?.

Rr (&) = [I - (¢ - &) Rr(£0)] 7! Rr(&o) = Z(f — &0)"Rr (&)™

n=0
Proof. For (a), write

[Rr(¢1) — Rr(&2)] (T — &) = (T — &) (T = éo0) = 1
=T -&D) T -6+ (T -6 - &) -1
= (T - &) Hé - &).

Rearranging the equation gives
Rr(£1) — Rr(€2) = (&1 - &2)Rr(€1)Rr(&2).

For (b), using (a),

tim Xr(©) — Rr(fo) _
1m =

i - 2
h E-& Jm Rr(£0)Rr(£) = Rr(£0)*

For (c), (a) implies

Rr(€) = [1 = (& = &)Rr(£0)] ™ Rr (o) = Z(f — &0)" R (€)™

n=0

since |£€ — &| < ||R7 (&) I~ by the von Neumann series.

Example
Tu =u' on X = Cla, b] with D(T) = C'|a, b].

(T-éNu=0ou =éu o u(x) = Ce™

for all C € R. Thus (T — £I)~! does not exists for all & € C. Hence p(T) = @ and o (T) = C.

142



Example
Consider Tu = u’ on X = C[0,1] and D(T) = {u e C'[0,1] | u(0) =u(l) = 0}. Then

(T-¢éDu=v, v e CJ[0,1], - u(x) = e ¢~ /Ox e~y (t)dt
u(0) = u(1) =0. u(1) =0.

Clearly, this is impossible for all v € C[0, 1]. Hence
p(T)=@ and o(T)=C.

Example
Consider Tu = u’ on X = C[0, 1] and D(T) = {u e C'0,1] | u(0) = ku(l)}. Solving

u —&u=v, v e C[0,1], - (e ¢u) = ey,
u(0) = ku(1). u(0) = ku(1).

So )
X
u(x):clefx/ e_ftv(t)dt+cze§x/ e v (t)dt,
0 x

for some c1, ca € R that should be determined. The boundary condition gives cy = kefcq and

u(x) = cre* [/x e ¢v(1)dt + keffl e_‘f’v(t)dt] .
0 X

Then 1
—&x r_ —&x —k & —&x — ,—&x —
(e u(x)) =c1 [e v(x) —ke‘e v(x)] ev(x) = 1 T %ot
Thus
e5* x 1
Rr(é)v(x) = —— / e $y(r)dr + kef/ e ty(r)de] .
1-— ket 0 X
We see that

o(T)={éeC|1-kef =0} ={¢eC|&=-logk+2nin,neZ} and p(T)=C\o(T).

Definition 5.25
An operator is said to be with compact resolvent if there exists & € p(T) such that Rr(¢) is

compact.

Remark
If T has compact resolvent, then for any ¢ € p(T), Ry(€) is compact. This is because of the
first resolvent identity. If Ry (£) is compact, then

Rr(&) = [I + (£ = &0)Rr(£)] Rr(£o)
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is also compact.

Theorem 5.26
T € B(X). Then o(T) is compact and

sup [&] < [IT]| < co.
geo(T)

Proof. o(T) is closed if and only if p(T) is open. Take &y € p(T). Consider the ball

B={1eC||a-&l < IRr(&)l}.
For 1 € B,
T—A = (T - &)+ (& — VI = (T - &) [ + (&0 — )Rr(&o)] -

Using the Neumann series, I + (£9 — 1) Ry (&p) 1s invertible since |&g — A| ||R7(&0)|| < 1. Hence
(T — AI)~! exists and bounded by the bounded inverse theorem. Then 1 € p(T). p(T) is open
and hence o (T) is closed. For arbitrary A > ||T||, the Neumann series shows that T — A is
boundedly invertible. Hence A ¢ o (T). Thus

sup [&] < [IT]| < co.
geo(T)

Using Heine-Borel theorem, o (7T') is compact. [

Theorem 5.27
d
LetT : D(T) C X — Y be a closed linear operator.

(a) If T~ exists and is bounded, then (T')~! exists and is bounded, and (T’)~! = (T~1)".
() If (T") ! exists and is bounded, then T~! exists and is bounded, and T™1 = (T")~L.

Proof. (a) Assume first that 7-! exists and is bounded. We first check the identity (77)! =
(T~1Y. For g € D(T"),

(THT'g=TT ' =gTT =g = (T HT =1
For the other side, let f € X’.
T Y f=(TYNT=fT'T)=fI=f. = TT'=L
Hence (77)~! = (T71)’. Now we show that (7”)~! is bounded.
|77 = sup [|(7")7'f]| = sup sup |(T") " f(y)| = sup sup | (T

I711=1 IA1=2llyll=1 [FlI=11lyl=1

< sup sup || f]| ||T 1” Iyl = ||T 1”
lAI=1llyll=1

(b) can be shown in a similar way. [
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Theorem 5.28
d
Let T : D(T) C X — X be closed linear operator. Then

(@ Rr/(€) = Ry(&) forall & € p(T).
® p(T") = {1 ’ Aep(M)} and o (T') = {1 ’ Aeo(T)h

Proof. We first prove (a). Let 1 € p(T). For all f € X’,
(Af,xy=(f, AUx) V¥xeX. = f)=2af=2alf.

Thus
(T-A)'f=f(T-A)=fT-fA)=fT—-Af=(T -2af.
Hence (T-AI)" = (T’-AI). Letx, — xin X and (T—AI)x,, — yin X. x liesin D(T-AI) = D(T).
By the closedness of T,
(T —A)x, =Tx, — Ax, > Tx — Ax = (T — Al)x.

On the other hand, (T —Al)x, — y so (T —Al)x = y and T — A/ is closed. Since T — Al is closed,

densely defined and invertible,
Rp() = (" =AD" = (T =A™ = (T =AD" = Rr(2)".

For (b), let 2 € p(T). Then Ry (1) exists and is bounded. Then Ry(1)’ : X’ — X’ defined
by Ry (1) f = fRy(A) also exists and

IR () Il = sup |fRr(D)x| < sup ARz CON eIl = AT IRz (OIS

so Ry(1)’ is bounded. It now follows from (b) that Ry (1) = Rp(1) exists and is bounded.
Thus A € p(T").

Now let A € o(T). If A is an eigenvalue, then T — Al is not invertible. Thus from theo-
rem 5.27, T' — AI = (T — AI)’ is not invertible. Hence A € o (T”). If A is such that Ry (1) exists

but is not bounded, then Ry (1)’ exists but is not bounded either, since

oo = [|[Rr(D)x]l = sup |fRr(D)x| < sup [(Rr(A)'f)x| < sup [|Rr (D) fILllxll = [IRr (D) lIx]I -
IE! I711=1 I711=1

From the proof of (b), we have seen that (7 — AI)’ = (T” — AI). Thus by (b),
Rp () = (T"=aD™ = (T -aD)) ™ = (T =AD" = Rr()’

is not bounded either. Hence A € o (T”). It follows that p(7’) contains the mirror image
of p(T) and also o (T’) contains the mirror image of o (T). Since p(T) N o(T) = @ and
p(T) U o(T) = C, we conclude that p(7’) and o (7’) are exactly the mirror images of p(7T)
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and o (T) with respect to the real axis. [

Remark
If X =H, then T’ =T*, and if 1 € o(T), then 1 € o-(T*) = o~ (T").

Lemma 5.29 (Riesz)
Let X be a normed vector space with dim X = oco. Let Y be a proper closed subspace of X. Then

for all a € (0, 1), there exists x € X with ||x|| = 1 such that ||x — y|| > a forall y €Y.

Proof. Fixv € X \Y. Let g =inf,cy ||v — y||. Since y is closed, 8 > 0. For all @ € (0, 1), there
isayg € Y such that 8 < ||v - yol| < B/a. Let z = IIX:igll so ||z]| = 1. We claim that ||z — y|| > @
for all y € Y. Indeed,

1 1
lz=yll = ——= v =yo—lv=yollyll = 7= lIv = o + IV = yoll Il 2 7———8
v = yoll v = yoll v = yoll
by the definition of 8. Hence,
B B
Iz =yl = > =a.
lv=yoll ~ Bla
Since y is arbitrary, z is the desired vector. ]

Proposition 5.30
Let T € B(X) be a compact operator. Then (T — I)(X) is closed.

Proof. Let x, € X be a sequence such that (7 —I)x,, — y. We first show that d(x,, ker(T —1))
is bounded. Suppose not. We can find a divergent subsequence, say x,, and define z, =

Xn/ |1Xn + ker(T — D) || x jxer(r-1)- Now
llxn +ker(T — Dl x jker(r-1) = d(xn, ker(T — 1))

is unbounded. Then

(T - I)xn
”xn + ker(T - I)”X/ker(T—[)

(T-Dz, = — 0.
Notice that z, = Tz, — (T — I)z,. By the compactness of 7, we may choose a subsequence z,,
such that T'z,, — z € X and thus z,, — z. It follows that (T — )z = 0 and z € ker(T - I), so
z + ker(T — I) is a zero vector in X /ker(T — I). On the other hand, z, is a sequence of unit
vectors in X /ker(T — I), a contradiction. Hence d(x,, ker(T — I)) is bounded.

Now for x,, since d(x,, ker(T —1I)) is bounded, we can find a sequence y, € ker(7T —1) such

that x, — y, is bounded. Since T is compact, we can find a subsequence x,, — y,, such that

Xng = Ynp = T(xnk - Ynk) - (T - I)(xnk - ynk) = T(xnk - )’nk) - (T - I)xnk
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is convergent, say to x. Then
(T-Dx = klirn (T-Dxy, =y

liesin (T — I)(X). Hence (T — I)(X) is closed. [

Theorem 5.31 (Spectral Theorem for Compact Operators)
Let T € B(X) be a compact operator. Then

(a) Every non-zero A € o(T) is an eigenvalue of T.
(b) For each non-zero A € o(T), dim(E,) < oo.

(c) o(T) has no limit point except possibly 0.

(d) o(T) is at most countable.

(e) If dim(X) = oo, then 0 € o (T).

Proof. For (a),let A € o(T) be non-zero. T —AI = (17T —1I). T is compact if and only if 71T
is compact and hence the case reduced to the case where A = 1.

Now suppose that 4 = 1. If 1 is not an eigenvalue, then T — [ is injective and has no
bounded inverse. It follows from the bounded inverse theorem and proposition 5.30 that
(T — I)(X) is a proper closed subspace of X.

PutY; = (T - I)(X) and Yy = (T — I)%2(X). Since T — [ is injective, Y5 is a proper closed
subspace of Y. Define Y, = (T — I)"(X) for n > 1. We obtain a sequence of proper closed
subspaces

Y1 DYDY D

By the Riesz lemma, we can choose a sequence of unit vectors y, € Y, such that d(y,, Y,+1) >
1/2. For m > n,

”Tym - Tyn” = ”(T - I)ym + Ym — (T - I)yn - yn” 2 d(yn’ Yn+1) =

N —

On the other hand, y,, is a bounded sequence and hence 7'y, has a Cauchy subsequence, which
is absurd. Hence 1 is an eigenvalue of 7. Thus every non-zero A € ¢ (T) is an eigenvalue of
T.

For (b), let A € o(T) be a non-zero eigenvalue. Suppose that dim(E,) = c. Then we can
find a sequence of unit vectors x, € E, such that Tx,, = Ax,, for all n and ||x,, — x,,|| = € > O for

all distinct m, n. Then
1Txp = Txp|l = [|Axn = Axp|l = 4] lIx0 — x|l = |2] € > 0.

This shows that Tx, cannot have a Cauchy subsequence, and T is not compact, a contradic-
tion. Hence dim(E,) < oo.
For (c¢), suppose that 1,, € o (T) is a sequence of distinct eigenvalues of T such that |4,,| —

|1] > 0. By (a), each A,, corresponds to an eigenvector x,,. Set Y, = span {x1,...,x,}. ThenY,
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forms a strictly increasing sequence of closed subspaces of X. For each Y,,, we can pick a unit
vector y, € Y such that d(y,,Y,-1) = 1/2. For m > n,

Tym =Tyull = (T = AnD)ym + Anym — (T = AnD)yn + ,y4ll
Since
(T - /lml))’m €Y1, (T - /lnl)yn €Y,-1 CYyp1, and Anyn €Yy C Yy,

we have 1
”Tym - Tyn“ > d(yna Yn—l) 2 5

This contradicts to the compactness of 7. Hence o-(T) has no limit point except possibly 0.
For (d), we claim a fact that every uncountable set in a separable metric space must have
infinitely many limit points. Suppose not. Let A C X be an uncountable set. Since X is

separable, we can consider a countable dense subset D C X. Let
B={B,(d)|reQ',deD}.

Consider Ayg = {a € A | a ¢ A’}, the set of isolated points of A. For each a € Ay, there is a
ball B, € B such that B, N A = {a}. Since B is countable and each B, corresponds to only
one a € Ag, we conclude that A = A’ U Ay is at most countable, a contradiction. The fact
follows. Now suppose that o (T) is uncountable, it must have infinitely many limit points,
contradicting (c). Hence o (T) is at most countable.

For (e), if o(T) contains no 0, then 77! exists and is bounded and I = TT~! is compact.
This only happens if dim(X) < oco. [

Example
X =?2(N), T : X — X defined by T(x,) = (nx,). Then T is compact. Consider Ty : (x,) —
(x1,...,x8/N,0,...).

[o¢]

2
|a,| x[12
| Tvx — Tx|| = L < .
j:ZN;-l 2T (N1

Then ||[Ty —T|| < ﬁ — 0as N — oo. Let x, € X with ||x,|| < 1. Since R(Ty) is finite

dimensional, we can find a subsequence x,, such that Tyx,, is Cauchy. Then
(T, = T || < [T, = Tvne || + | Twvn, = T, || + || Tvxn, — T, |
< |7y - TI| (”x”k” + ”xnl“) + ||TNx”k - TNX”I” — 0.
Theorem 5.32
Let T be a closed operator on X with compact resolvent. Then
(a) o (T) consists entirely of eigenvalues of T,

(b) dim(E,) < oo for all eigenvalues A of T,
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(¢) Rr(¢) is compact for all & € p(T).

Proof. We first show (c). Let & € p(T') such that Ry (&p) is compact. By the resolvent equa-

tion,

R7 (&) — Rr(&) = (6 —&0)Rr(€)Rr(&0) = Rr(&) = (I + (& - &0)Rr(§))Rr (o)

for any & € p(T). Since Ry (&) is compact and

I+ (& = &o)Rr () < [I1]] + 1§ = Lol [RT(E)]] < o0

for all £ € p(T), we conclude that Ry (¢) is also compact.
Next, we claim that o (R7(&y)) = f(o(T)), where f(&) = ﬁ Let &y € p(T) be such that
R7(&p) 1s compact. Observe that

T-¢1 = (T—=&ol)—(§-&0)] = (T=¢ol)(I=(E—0)Rr(§0)) = —(E—£0)(T=Eol) | R (€o) — éTlfoI)
Then T — &1 has bounded inverse if and only if Ry (&y) — ﬁ[ has bounded inverse. Thus
& € p(T) if and only if (€ — &) ™! € p(Rr(&)). The claim follows.

Now let f(1) = ﬁ € 0(Rr(&p)). Then if f(1) = 0, A cannot be finite. We only need to
deal with the case where f(1) # 0. We claim that if u € o (R7(&p)) is non-zero, then u is an
eigenvalue of Ry (&).

Suppose not. Then ker(Ry(&p) — ul) = {0}. We shall deduce that (Rr(&y) — ul)(X) = X.
Assume again that this is not the case. Then X; = (Ry (&) — ul)(X) C X is a proper closed
subspace since Ry (&) is compact. Also, Ry (&) (X1) C X7 since if x € X7, then thereis y € X3
and z € X such that

x = Ry (éo)y = (Rr(€o) — ul)y + uy = (Rr(€o) — pd)y + u(Ry (&) — ul)z € X.

So R7(&0)(X1) € Xi. Put Xo = (Rp(&0) — ul)(X1). Then Xj is a subspace of X; since if
x € (Ry(&) — ul)(X7), there is y € X7 such that

x = (Rr(éo) — ul)y = Ry(&0)y — py € Xi.

It is also a proper subspace of X7 since if not, then we may pick y € X\ X; and thereis z € X3
such that

(Rr(é0) —ul)z = (Rr(éo) —ul)y = y=z€X;

since Ry (&o) —ul 1s injective. This is a contradiction and X C X; is a proper closed subspace.
Continue this process, we can find a sequence of strictly decreasing closed subsapces X7 D

X D --- such that X,,+1 = (Rr(&0) — ul)(X,,). Applying the Riesz lemma, we can construct a
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sequence x, € X, ||x,|| =1 and d(ux,, X,+1) = 1/2.
Ry (&0)xn — Ry (€0)xm = (R (£0)xn — pxn) + (X0 — xm) = (Rr (§0)Xm — pxm)
Suppose n > m. Then X,,1 C X,, C X,,+1 and we conclude that
IR7 (§0)xn — R (£0)Xmll = d(pxm, Xm+1) = 1/2.

This contradicts the fact that Ry (&) is compact. Thus (Rr(&y) — ul)(X) = X and by the
bounded inverse theorem, Ry (&) — ul has bounded inverse and u € p(R7(&p)), a contradic-
tion. Thus y must be an eigenvalue of R7(&p). Thus for A € o (T),

(T—-&oD)tx = (Tx—&ox) = Tx—&ox =Ax—&x =  Tx = Ax.

X = x=
=& A—¢&o

Hence A is an eigenvalue of 7 and (a) follows.
For any eigenvalue A of T lies in o (T), (1 — &)~ € o (Rr(&)).

T—-A=(T-él)-(1-&) = Rr(éo)(T —al) =1-(A-&)Rr(&)

1 1
= - RT(fO)(T Al) = Rr (&) - WI
Rr(&p) is invertible and the right hand side has finite nullity since Ry (&) is compact. Thus
dim(ker(T — Al)) = dim(ker(Rr (&) — I)) < oo, [
Remark

If T is a bounded closed operator with compact resolvent, then dim(X) < co. Indeed, suppose
that dim(X) = co. Let & € p(T). Since & € p(T), we shall write T = &1 + (T — €I). Then
Rr(&)T = éRp (&) +1. Hence I = Ry(&)(T —E£1) is compact. Thus dim(X) < oo, a contradiction.
Hence dim(X) < oo.

Theorem 5.33 (Riesz Projection)
Let T be a closed operator on X and A € o (T) is an isolated point of o(T). Then there is an

associated eigen-projection

1
Py =5 b Re(Ova.
2ni Jr
where 1" is a simple closed curve enclose only A.

Proof. We verify that P is indeed a projection, i.e. P2 = P.

(%)ff&@&wwmwyﬂff&“)Mmgm
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We can shrink one of the contours, say I'; enclosed by 'y, and

1)\2 1 1)\2 1
P2=(—.) f Re(0) ¢ L dndc - ( ) f Re) § —=—dcdn
2ni) Jr, rn{-1n 2ri ) Jr, ¢

2
_ _(%) }é Rr(n)(2ri)dn = P.

Hence P? = P and P must be some projection on some subspace. [

Remark
With the eigen-projection P, we may write X = My & Ms and decompose T = T1 + T, where
My = P(X), and My = (I — P)(X), and T1 = TP, To = T(I — P). Now expanding Rr,(1) by the

Neumann series,

Rr,(€) = Rr(£)P = Z - A)m,
where 1

D=(T-anP=—_ }5 (6 - DRr(€)de.

it Jr
To see this expression, we can expand Ry (&) by the Laurent series
Ri@®= Y Cule =2, where €, = o e -0 e
n=—k

Note that C_; = —P. Thus

C_yP CoP  C_iP
++ +
(& - )* (-2 &-2

Since C_1P = —P, matching the C_gP term,

Rr(&)P = +CoP + - -

1
D=-Cy= ~5— .f(f - )Ry (&)dé.
e Jr

Remark

For the case where we have several isolated eigenvalues A4, ..., Ak,

TP = Z/lkPk + Dy,
k=1

with Py and Dy defined with respect to ;. We also have
(@ PyDy = DyPy = Dy.
(b) PyP; = 06yjPy.

Example
Let X = C[0,n] and D(T) = {u € C?[0,x] |u'(0) = u’(n) = O}. Define T : D(T) — X by
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Tu = —u". We solve the differential equation
—u”" —Adu=v,
u'(0) =u'(m) =0.

u=Rr(A)v = (T -1y

l.e.

For suitable A, we seek to write
Vs
Rr(A)v = (T -al)ty = / G (x,1)v(1)dt,
0
where G(x,t) is the Green’s function. We characterize G by the following differential equation

=Gy (x, 1) —AG(x,1) = 6(x — 1)
G,(0,1) = Gy(m, 1) =0

G (t%,1) =G (t7,1) = -1
G(t*,1) =G(1,1).

For x # t, we have

~G(x,1) —AG(x,1) =0 = G(x,1) = A(1) COS(\/ZX) + B(1) Sin(\/zx) x <t,
C(t) COS(\/ZX) + D(l) Sin(\/Zx) x> 1.

Taking the derivative and using the boundary conditions,

G.(0,1) = —A()VAsin(V20) + B(t)VAdcos(VA0) =0 = B(t) =0,
G,(m,t) = —C(t)VAsin(Van) + D())VAcos(VAr) =0 = D(t) = C(r) tan(Van).

Also,
Gy (t*,1) = G (t7,1) = —C(1)VAsin(VAr) + C(¢) tan(VAr) VA cos(VAr) + A(t) VA sin(Var) = —1.

Thus
VA sin(VANA(r) = C(t)(\//_l sin(VAr) — V2 tan(Vir) cos(\//_lt)) ~1

The last condition gives
A(Y) cos(\//_lt) = C(1) cos(\//_lt) + D (1) sin(VAr).

A(1) = C(¢) + D(r) tan(VAr) = C(¢)(1 + tan(VAx) tan(VAr))
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Thus

3 — cos(VAr)
¢ = \/ﬁtan(\/ﬁn)'
3 cos(\/_t)
A(f) = — \/_ (V) +sin(Var) |.
3 — cos(VAr)
D(t) = —\/Z

Plugging the solution back into the Green’s function,

cos(VA(m—1)) cos(Vax)

G(-x l‘) = B VA sin(Var) x <t,
> _cos(ﬁt) cos(VA(r—x)) .
ﬁsin(ﬁn) > = L.

Hence

u(x) = '/OHG(x, tyv(r)de.

The resolvent exists and is bounded if and only if A # k2 for k € Z. Thus
p(T)=C\{k® |k ez} and o(T)={k*|keZ}.
Now notice that for any bounded sequence v, € C2[0, 7], [|[Valle < M,

sup
x€[0,7]

/ G(x,t)v,(t)dt

<M/ sup |G(x,1)|dt

xe[0,7]
by the Cauchy-Schwarz inequality. Pick 1 = 1/4. Then |G (x,t)| < 2 and

IRT (D) vyl < 27M.

Thus Ry(A)v, is bounded in ||-||. In order to apply the Arzela-Ascoli theorem, we need to
show that Ry (A)v, is equicontinuous. For any x € [0, n] and x; — x,

|G (x, ) —G(x,1)] <2 sup |G(x,1)| < oco.
(x,1)€[0,7]2

The right hand side is integrable on [0, n]. LDCT gives

/g
/ |G (xk,t) —G(x,t)|dt > 0 ask —
0
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since G(x,t) is continuous in x by construction. Thus

‘/HG(xk,t)vn(t)dt—/RG(x,t)vn(t)dt < /ﬂlG(xk,t) —G(x, )| |va(t)| dt
0 0 0

e
< M/ |G (x,t) — G(x,t)|dt = 0
0

as k — oo. Since x — /Oﬂ G (x,t)v,(t)dt is continuous on a compact set, we obtain the uni-
form equicontinuity of Rr(A)v,. From the Arzela-Ascoli theorem, Rr(A)v, has a subsequence

Cauchy in |||, and thus Ry () is compact.
We conclude that T is a closed operator with compact resolvent. let 1 = k2 be an isolated

eigenvalue. The eigen-projection associated to A is given by

1 d 1
Pyw=—-— RT(z)vdz = ——f / G, (x,t)v(t)dtdz = / ——,‘7{ G,(x,t)dzv(t)dt.
27 0 0 27 I,

1

5= G J(x,0)dz = —Res(G,(x,1);z = k?) = — hm(z—k )G, (x,1).

For x <t, using the L’Hospital’s rule, we have

—cos(y/z(m — 1)) cos(+/zx)

. 2 1 _ 1.2
ZILI??(Z - k*)G,(x,1) = ILI?Z(Z k*) V7 sin(yZn)
—cos(yz(m — 1)) cos(zx) + (z — k2) |sin(y/z(7 — 1)) cos(\/Ex) &) t) + cos(z(m — 1)) sin(\/Zx)QLﬁ]
= lim
k2 sm(\/_n)

v T zcos(\/_ﬂ)w_
(-1)**12 cos(k(m — 1)) cos(kx) k #0,x <1,

-1 k=0,x<t.
T

—% cos(kt) cos(kx) k #0,x <t,

k=0,x<t.

=

For x > t, by similar arguments,

—2 cos(kt) cos(kx) k #0,x>1,

lim (z - k®)G,(x,t) =4 *
—k? -1 k=0,x>t.
Ve
Hence
1 2 cos(kx) cos(kt) k # 0,
- G,(x,t)dz=13" (ki) cos (k)
2mi Jr, 1 k = 0.
Ve
So

%/oﬂ cos(kt)v(t)dt cos(kx) k #0,

P,1V= 1 rn
2 [ v(nde k=0,
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where A = k2.

5.4. Operators on Hilbert Space

Proposition 5.34
Let u, - uH and lim SUD,, oo |Unll < |lull. Then u, — u € H strongly.

Proof. Directly compute that
it = ull® = lluall® + ull® = 2R G, ) < el + fJull® = 2[Jufl* < 0

as n — oo, Thus, u,, — u strongly. [

Proposition 5.35

If u, converges weakly in H, then u, o for some u € H.

Proof. u, is weakly converge. By the uniform boundedness principle, ||u,|| < M for some
M > 0 and all n. Define fv = lim,_, (#,, v) where f € H’. By the Riesz representation
theorem, there is w € H such that Tv = (w, v) for all v € H. Hence (u, —w, v) — 0 for all
v € H. Then w is the weak limit of u,,. [ |

Proposition 5.36

Every bounded sequence in a separable Hilbert space H has a weakly convergent subsequence.

Proof. Consider a bounded sequence {u,} ¢ H. Let B be the closed unit ball in H. Since
u, is bounded, there is some ¢ > 0 such that ¢B contains all u,. By the Banach-Alaoglu
theorem, B is weakly* sequentially compact and hence ¢B. Since H is reflexive, c¢B is weakly

sequentially compact. Thus, there is a subsequence u,, such that u,, S uecBcH. [

Definition 5.37
T € B(‘H1, Ha). The adjoint of T is the operator T* € B(Hs, Hi) such that

(Tu, vyqy, = (u, T*v)gy, forall u € Hy,v € Ho.

Remark
H, and Ho are reflexive. T** =T and T' = T*.

Definition 5.38
T € B(H) is symmetric if T = T".

Definition 5.39
T € B(H) is normal if TT* = T*T.

Definition 5.40
T € B(‘H) is self-adjoint if T = T".
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Proposition 5.41
T : Hy — Ho. T is compact if and only if T* is compact.

Proof. Suppose T is compact. Since T is bounded, T* is also bounded. For any bounded
sequence u, € Ho, since TT" is compact, there is a subsequence u,, such that 77%u,, is
Cauchy. Hence

||T*(unk - ”n[)”Q = <T*(l/lnk - un[)’ T*(unk - un;)) = <unk — Upy, TT*(Mnk - un[)>

< [l = w77 Gt = )| = 0

as k,l — oo by the Cauchy-Schwarz inequality. Thus, T is compact. If T* is compact, then

T = T** is compact. [

Definition 5.42
The spectral radius of T € B(X), where X is a Banach space, is defined as

r(T) =sup{|d] : A€o (T)}.

Theorem 5.43 (Gelfand’s Spectral Radius Theorem)
Let T € B(X). Then |T"|*'" admits a limit and

lim ||7")|*" = #(T) = sup {|] : 1 € o-(T)}.
n—oo
Proof. FixT € B(X) andletn € N, 1 € C and 1" € p(T").
(T" = ") = (T = AD(T" P+ T 204 -+ TA2 4+ 2771

Since A" € p(T"), the left-hand side is invertible. Multiplying both sides by (7" — 1"I) shows
that (7" — Al) is also invertible and A € p(T') by the bounded inverse theorem.

If A € o(T), then A" € o (T") for all n € N. The theorem 5.26 shows that |1"| < ||T"|| and
14| < |IT"]|Y". We arrive at

#(T) = sup{|4] : 1 € o(T)} < liminf ||T"||*" .
n—o00
Now suppose |1| > ||T||. Neumann series gives

(T-an™ == a7,
n=0

For any ® € B(X)’,
DT - AL = - Z L.
n=0

156



In particular,
sup [17"®(T")| < Ch < 0
n

for any ® € B(X)’. Applying the uniform boundedness principle, we have

177" = sup TO(IMI<Cr = I < jar ey
eB(X)’

Thus
lim sup ||T")|1Y" < |4].

n—o00

Since |1| can be arbitrary close to r(T),

lim sup ||T"||Y" < r(T).

n—00

Combining the two inequalities, we have

#(T) = lim ||T"|Y" = sup {|A| : 1 € o(T)} .

Lemma 5.44
Let T € B(H) be a normal operator. Then r(T) = ||T]||.

Proof. We start by proving the case for T being self-adjoint. Let v € H be a unit vector. Then
ITvII? = (Tv, Tv) = (v, T*Tv) = (v, T®) < ||[T?v|| < |IT|1*.

Taking supremum over all unit vectors v € H, we have ||T||? = HT2|| By induction, we have
n 27"
72

= ||T||. Gelfand’s spectral radius theorem gives

}"(T) _ ’}1_1;1010 ||T2n 1/2"

=T
Now if T is normal, then T*T is self-adjoint and
I(TT)™ |l = ((T*T)"v, (T*T)"v) = (v, (T*)"T"v) = (T"v, T") = |IT"v||*.

Taking supremum over all unit vectors v € H, we have ||(T*T)"|| = ||7"||?. Now, by Gelfand’s

spectral radius theorem,
F(T*T) = lim ||(T*T)"||Y" = lim |T"|*" = r(T)2 = ||T|?.
n—0oo n—0oo

So r(T) = ||T]|. [ |

Lemma 5.45
Let T € B(H) be a normal operator. If T has an eigenvalue A, then A is an eigenvalue of T*.
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Proof. For any u € H,

(T = ADul|? = (Tu, Tu) — A {u, Tu) — A{(Tu, u) + |A|? (u, u)
= (u, T*Tu) — A {u, Tu) — A (Tu, u) + |22 (u, u)
= (u, TT*u) — A (T"u, u) — A (u, T*u) + |A|? (u, u)

_ _ 2
= (T*w, T*u) — A(T*u, u) — A, T*u) + |42 (. u) = H(T* - /U)uH .

The lemma follows. u
Theorem 5.46 (Spectral Theorem for Compact Normal Operators)
Let T € B(H) be a compact normal operator. Then

(@) T admits a spectral representation

T = Z APy,

where P, is the eigen-projection on E,, .
(b) For distinct eigenvalue A, u, Ey L E,.
(¢ I =73, P,+ Py, where Py is the projection onto ker(T).
(d) Py,P, =6,,P, forall m,n.

Proof. If T is zero, then the theorem is trivial. Suppose now that T is non-zero. Since T
is normal, if there is no 1 € o (T) such that 4 # 0, then ||T|| = »(T) = 0 by lemma 5.44
contradicting to the hypothesis that T is non-zero. Hence there is a non-zero A € o (T) and
by the compactness of T, A is an eigenvalue.

Now let A, be the non-zero eigenvalues of 7. Put

M = span {x | X € E/zn}~

Then M is a closed subspace.
Next, if 1 # u are two distinct eigenvalues of T, associated with the eigenvectors u and v,

then lemma 5.45 shows that
Au, vy =(Tu, v) = {u, T*v) = u{u, v).

This implies that (¥, v) = 0 and hence E, L E,.

Hence we may also write M = (P, E;,. Now consider T|y.. If 4 # 0 is an eigenvalue of
T|y<, then there is a nonzerov € M+ such that T'|y.v = Tv = uv. Hence u € o (T) is non-zero
and v € M. Then v = 0 contradicting to the assumption that v is non-zero. Thus 7|+ has
no non-zero eigenvalue. It follows that by lemma 5.44, T|+ = 0. The Riesz projection gives
the projection on E,, since every non-zero eigenvalue of a compact operator is isolated. Now
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we can write H = M & M+ and for all x € H, decompose x =y + z where y € M and z € M.
Then

Tx=Ty+Tz= Z/l,,Pny +0= Z/lnan.
n n
This shows (a). (c), (d) follows immediately from H = M & M+ and (b). [

Remark
Note that if T : Hi — Ha is compact. T*T is always symmteric compact and thus admits a
orthonormal basis of eigenvectors {u,} with non-negative eigenvalues {/ln/l_n} = {lxl,,l2 } The

spectral representation of T*T can be written as
T"Tv = Z |0nl? (v, up) uy.
n

We can rearrange the eigenvalues so that |A1| = |12| = --- > 0. Set

1 1 1
= —Tu,, <u;1, I/t;n> = — <Tuna Tum> = pr— <T*Tuna um> = /l:nénm

u
n /1,1

n/lm ntm m

So {u;} is an orthonormal set in Hs. In fact,
Tv = Z/ln (v, u)) .
n

The right-hand side converges since

2
< ST . ) < 1wl Y (v, ) < lanl vl = o,

n>N n>N

Z Ao (v, u)))u,

n>N

Definition 5.47
Let Hi and Hs be two separable Hilbert spaces. The Hilbert-Schmidt operator is the class

of operators

By(Hy, Ha) = {T € B(H1, Ha) | IT|lpzs < oo}

with the inner product defined as

(S, TYps = Z (Sei, Te;),

where {e;} is an orthonormal basis of H; and the norm is defined as ||T||gs = VT, T)ys-

Remark
The Hilbert-Schmidt inner product is well-defined, i.e., independent of the choice of orthonor-

mal basis. To see this, fix an orthonormal basis {f;} C Hs. For arbitrary orthonormal basis
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{ei} € Hy,

Se; = Z <Se,-, f]> I
J

and
(Se;, Te;) = Z <Sei, fj> <Tei, fj>
Now, J
(S, Thys = Z (Sei, Te;) = Z Z (Sei, ;) (Tes, f;) = Z Z (f;, Sei) {f;, Tei)
, , 75
= 28 i e (T s es) = 2 AT 13 5°17)
J J

which is independent of the choice of {e;}. The exchange of the order of summation is justified
by the fact that it is absolutely convergent.

DUT T f) = T s <00 and > (S°f5, 8°f;) = 18" [lfs < oo
J J
So 1
ST g 50 < X A il sl < e
J J
permitting the exchange of the order of summation.

Proposition 5.48
Let T € Bo(Hi1, Ha), then ||T||ys < |IT]I.

Proof. For any unit vector u € Hi, write u = Y; c;e; where {e;} is an orthonormal basis of

Hi.
1/2 1/2
ITull = HZ ciTel)| < (Z |c,~|2) (Z ||Te,~||2) = ull 17 Nlzs = N7 N -
i i i
Taking supremum over all unit vectors u € Hi, we have ||T|| < ||T||gs- [
Proposition 5.49

(B2(Hi, Ha), (-, -Yus) is a Hilbert space.

Proof. We first show that (-, -) ¢ is indeed an inner product.
(T, T)ys = ) (Tow, Tex) 2 0,
k

and (T, T)ys = 0 if and only if T¢; = 0 for all &, if and only if 7" = 0.

<CT + S’ U>HS = Z <(CT + S)¢k’ U¢k> = Z c <T¢k’ U¢k>+<S¢k’ U¢k> =c <T’ U>HS+<S’ U>HS
k k
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forallc e C,T,S,U € Lo(‘H,H’). Also,

(S, Thys = ) (Soi Tew) = D (Tow, Soi) = (T, S)ys.
k k

Hence (-, -)yg 1s an inner product. It now remains to show the completeness. Let 7, €
Ba(H1, Hs) be a Cauchy sequence in By(Hi, Ha). Then ||T,, — T,||zs — 0 and ||T,, — T,|| — O
as m,n — oo by proposition 5.48. Hence there is a T € B(‘H1, Hs) such that ||T,, - T|| — O.
For any € > 0, there is N € N such that

N
D i = Tuil® < 1T — T1° < €
k=1
for all m,n > N. Let m — oo and then s — oo,
DUIT¢i - Tugil? < €.
k=1

Thus ||T, — T||ys < € for alln > N. Then T € By(Hi, H2) and 7, — T in the Hilbert-Schmidt

norm. u

Theorem 5.50
Every Hilbert-Schmidt operator is compact.

Proof. Let T € Ba(Hi, Hz) be a Hilbert-Schmidt operator. Consider the orthonormal basis
{e;} € H;. Define the truncated operator

n
T,x = Z (x, ;) Te;.
i=1

R(T,) = span({Tei,...,Te,}) is finite-dimensional and thus 7}, is compact.
S o) 1/2 0 1/2
T =T)xll = || )] ¢x, ey e < ( D, el->|2) ( > ||Tel-||2)
i=n+1 i=n+1 i=n+1
. 1/2
< [l ( > ||Te,~||2) -0
i=n+1

as n — oo since 7T is of Hilbert-Schmidt class. Hence 7,, — T in the operator norm. For any
bounded sequence x, € H, there is a subsequence x} such that 71x! converges. Extracting a
subsequence x,zl from x,% such that Tgx,% converges. Continuing this process, we obtain a series
of subsequences x¥ such that zj’,j converges for j < k. Take the diagonal subsequence xJ,

then Ty x!! converges for all k € N. Thus Tx]] converges and T is compact. ]

Theorem 5.51
Let ‘H be a separable Hilbert space and {e;} be an orthonormal basis of H. Consider a set
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{fi} ¢ H and
= lfi-el®.
Then { f;} forms a complete basts if one of the following conditions holds:
@ r? <1
(b) r? < co and {f;} is linearly independent.

Proof. SetT : H — H defined by T : ¢; — f; and extended by linearity. We have that T is

bounded since for u = }}; c;je;,

ITull < [[(T = Dul + [lull = Zci(fi —ei)

1

+ [[ul]

1/2

1/2
< (Z |c,-|2) (Z = e,-||2) + Nl = uell 7 + Nl = (14 7) fJu]

Also, T — I is a Hilbert-Schmidt operator:

7=l = 0T =Dl = Y1 -l = <o
i i

Now, if (a) holds, then ||T — I|| < r < 1 and hence T = (I — (T —I)) is invertible. T~! exists
and T~Y(H) = H.Forany x € H,ifx = 3, cif; = 3, d;f;, then

Z(Ci -d)fi=0 = Z(Ci —d)T7'f; = Z(Ci —d;)e; = 0.
Thus ¢; = d; for all i and { f;} is a complete basis.

Suppose (b) holds. Set S = T — I. Then S is Hilbert-Schmidt and thus compact. Now
Consider the equation (S + I)x = y for y € H. Fredholm alternative asserts that either
the equation has a solution for all y € H or (S + I)x = 0 has a non-zero solution. Since f;
are linearly independent, the latter fails to hold. It follows that S + I is invertible and thus
T. Bounded inverse theorem shows that 7~! is bounded. The rest follows from the same

argument as in (a). [ |

Definition 5.52

LetT : D(T) é H1 — Hy be a linear operator. The adjoint of T is defined as T* : D(T*)Hy —
Hisuch that T*y = % where X € H satisfies (Tx, y)q,, = (x, X)¢, for all x € D(T). The domain
of T* is defined as

D(T") = {y € Hy | there exists & € Hy such that (Tx, y)g;, = (X, X)gq, VX € D(T)} .

Remark

D(T*) consists of y € Ha such that x — (Tx, y)qy, is a continuous linear functional on D(T).
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Since D(T) is dense in Hi, Riesz representation theorem shows that T* is well-defined.

Proposition 5.53

Let T : D(T) é H1 — Hy be a closed linear operator. Then
(a) ker(T*) = R(T)*.
(b) ker(T) = R(T*)*.

Proof. For (a), if y € ker(T*), then T*y = 0. For all z € R(T), there is x € D(T) such that
z=Tx.

0=(x, T) =(Tx, y) =z, y)
for all z € R(T), which implies y € R(T)* so ker(T*) c R(T)*. Conversely, if y € R(T)*, then
(z, y) = 0for all z € R(T). For such z, there is x € D(T) such that z = Tx. Hence

0=(Tx,y)=(x, T")
for all x € D(T). Since D(T) is dense in H;, we have
T"y=0 = yeker(T").

Thus ker(7T*) > R(T)* and ker(T*) = R(T)*.

For (b), suppose y € ker(T). Then Ty = 0 and for all x € D(T"), (y, T*x) = (Ty, x) = 0.
Thus y € R(T*)* and ker(T) c R(T*)*t. Conversely, if y € R(T*)*, then for all z € R(T"),
T*x = z for some x € D(T*) and (y, z) = (y, T*x) = (Ty, x) = 0 for all x € D(T*). Notice that
D(T*) ={y € Ha | x — (Tx, y) is continuous}. Since T is densely defined, D(T*) is dense in
Hy. Thus Ty = 0 and y € ker(T). Hence ker(7T) > R(T*)* and ker(T) = R(T*)*. ]

Definition 5.54
T:D(T) e H— His symmetric if (Tx, y) = {(x, Ty) for all x € D(T).

Remark
D(T) c D(T?).

Definition 5.55
T : D(T) — H is self-adjoint if T = T".

Remark
In such case, D(T) = D(T”).

Proposition 5.56
Suppose S, T and ST are densely defined operators in H. Then T*S* C (ST)* and if in addition
S € L(H), then T*S* = (ST)*.
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Proof. Write D((ST)*) = {y eH | Ly:xw(STx, y) is continuous}. If y € D(T*S"), then
y € D(S*) and S*y € D(T*). Hence

|Ly(0)| = {STx, )| = KTx, S*y)| =[x, T"S*y)| < ISyl Ix]| < o0

for all x € D(ST). Since D(ST) is dense in H, L, is continuous. Hence y € D((ST)*) and
D(T*S*) c D((ST)*). For y € D(T*S*),

(x, T*S"y) = (Tx, §7y) = (STx, y) = (x, (ST)*y) = (x, T°Sy—(ST)"y)=0

for all x € D(ST). Since D(ST) is dense in H, {(x, T*S*y — (ST)*y) = 0 for all x € H and thus
T*S*y = (ST)*y. We conclude that 7°S* c (ST)*.
Now further assume that S € L(H) so D(S) = H and D(S*) = H. Suppose y € D((ST)").
y € D(5%). Then
(x, (ST)"y) = (STx, y) = (Tx, S*y)

is continuous for all x € D(ST). Thus S*y € D(T*) and y € D(T*S*). Hence D((ST)*) C
D(T*S*) and T*S* = (ST)". [ ]

Definition 5.57
Let T : D(T) ¢ Hy — Hy be a densely defined operator. The V-transform V : H; X Hy —
Hy X H is defined as

V(x,y) = (y,—x).

Lemma 5.58
Let V be the V-transform with respect to a densely defined operator T : D(T) C Hy — Ho.

(@ G(T*) = [VG(T)]* = V(G(T)™H).
(b) Ifin addition T is closed, then Ho X H; = V(G(T)) & G(T").

Proof. For (a), write
[VG(T)]* = {(v,u) € Ho x Hi | {(v,u), (Tx,=x)) = (v, Tx)qq + (u, =x)g, =0 Vx € D(T)}.
If (y,T*y) € G(T*), then

(3. T"y), (Tx,=x)) =y, Tx)qq, + {T7y, =X)qq, = (Vs TX)qq, = X, T"y)q, =0

for all x € D(T). Hence (y,T*y) € [VG(T)]* and G(T*) c [VG(T)]™ .

Next, write

V(G(T)) = {(v,u) € Ho x Hy | {((-u,v), (x,Tx))=0 VxeD(T)}.
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If (v,u) € [VG(T)]*, then
((=u,v), (x,Tx)) = =(u, X)q + (v, Tx)qq, = 0= ((v,u), (Tx,—x)) .

Thus (v,u) € V(G(T)*) and [VG(T)]* c V(G(T)*4).
Finally, if (v,u) € V(G(T)?'), then

0=((~u,v), (x,Tx)) = = (u, X)q, + v, Tx)qy, = (T"v — u, x)gy,
for all x € D(T) dense in H;. Thus T*v = u and (v, u) € G(T*). We conclude that
G(T") = [VG(D)]* = V(G(T)*).

For (b), it suffices to show that V(G (7)) is a closed subspace. Indeed, T is closed and so
is G(T). Note that

IV I = (s =x), (v, =2)) = (3, ¥) + €, x) = 16 )P
Hence V is an isometry and V(G (T)) is closed. It follows that
Ho x Hy = V(G(T)) ® V(G(T)*) = V(G(T)) & G(T*)

by (a). [

Proposition 5.59
T :D(T) é H — H is closable if and only if D(T*) is dense in H.

Proof. Suppose that D(T*) is dense in H. Then T** is well-defined. Since V2 = -1,
l(G(1)) = G(D)* = [VV(G(D)H)]" = V([VG(D)IM* = V(GT)* = G(T™)

by lemma 5.58. Hence G(T*") is closed and G(T) c G(T**). So T** is the closed extension of
T and thus T is closable.

Suppose that T is closable. For D(T*) to be dense, it suffices to show that D(7T*)* = {0}.
Let x € D(T*)*. For each y € D(T*), we have (x, y) = 0. Thus

((x,0), (y,T"y)) = {x, y) +(0, T"y) = 0.

Then (x,0) € G(T*)* and (0,x) € V(G(T*) L) = [VG(T*)]* by lemma 5.58. [

Proposition 5.60
T :D(T) é H — H. Then T* is always closed.

Proof. For any subspace M, M* is always closed. It follows that G(T*) = [VG(T)]™ is closed
in H X H by lemma 5.58. ]
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Theorem 5.61
d
Let T : D(T) Cc H — H be symmetric. Then

(@) If D(T) = H, then T is self-adjoint and bounded.

() If T is self-adjoint and injective, then R(T) is dense in H and T~ is self-adjoint.

(¢) If R(T) is dense in H, then T is injective.

(d) If R(T) = H, then T is self-adjoint and T~ is bounded.
Proof. We start from (a). Since T is symmteric, D(T) c D(T*). If D(T) = ‘H, then D(T*) = H
and T is self-adjoint. Thus proposition 5.60 shows that T = T* is closed.

For (b), to show that R(T) is dense in H, we can show that R(T)* = {0}. Let y € R(T)*,
0= (Tx,y)={(x,T*y) forall x € D(T). Hence T*y = Ty = 0 since D(T) is dense in H. T is
injective so y = 0. Thus R(T)* = {0} and R(T) is dense in H. It follows that 7! exists and
is densely defined.

Consider now the V-transform. Note that G(T~1) = V(G (-T)) by definition. So V(G(T™1)) =
G(-T). Now since T is self-adjoint, it is closed (proposition 5.60) and so is 771

HxH =VG(TY) & GU(T™H)*)

and
HXH=V(G(-T)) @ G(-T) =G(TH e V(G(T™)).

We see that G(T!) = G((T™1)*) and thus (T71)* = T~!. Hence 7! is self-adjoint.
For (c), suppose Tx = 0. For all y € D(T),

(Tx, y) ={x,Ty) =0.

Hence x € R(T)*. Since R(T) is dense in H, x = 0 and ker(7T) = {0}. Thus T is one-to-one.
For (d), from (c), T is one-to-one and D(T~') = H. Suppose x = Tu and y = Tv for some
u,v € D(T). Then
(T_lx, y> =(u, Tv) = (Tu, v) = <x, T'1y>.

Thus 7! is symmetric. Thus 7! is self-adjoint and bounded; 7 = (7~1)! is also self-adjoint
by (b). n

Theorem 5.62 (Spectral Theorem for Operators with Compact Resolvent in H)
d
Let T : D(T) Cc H — H be a closed operator with compact resolvent. Then

(a) o (T) consists only of isolated eigenvalues.
(b) o(T) is at most countable and accumulates only at infinity.
(c) dim(E,) < oo forall A € o(T).

(d) If H is separable and T is self-adjoint, all eigenvalues are real and there is a complete
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orthonormal basis {e;} consisting of eigenvectors of T and
Tx = Z ;i (x, e;) e,
i=1

for all x € H, where A; are the eigenvalues of T.

Proof. We have already seen in theorem 5.32 that the resolvent consists only of isolated
eigenvalues and each eigenspace is finite-dimensional. Now by the proof of theorem 5.32,
f(2) = (z =&)Y, & € p(T), satisfies f(o(T)) = o(Rr(&p)). Since Ry(&p) is compact and
f 1is injective, o-(T) is at most countable as well. Furthermore, since Ry (&p) is compact, it
accumulates only at 0 and thus o (7T) accumulates only at infinity.

For (d), let & be a point such that Ry (&) is compact. In fact, Ry (&) is normal.

Rr(£0) = (T =é) ™ = (T = &)™ = (T = &N = (T = &)™)
Now
Rr(€0)Rr(£0)" = (T—& D)™ (T-Zol) ™" = [(T - &I)/(T - &) = [T? - 2R(&0)T + 602 1] .
On the other hand,
Rr(£0)*Rr(€0) = (T—ZoD) M (T=&ol) ™" = [(T = EI)(T - &D)] ™ = [T% = 2R ()T + 1&0l* 1] .

So Ry (&) is compact and normal. The spectral theorem for compact normal operators applies

and there is an orthonormal basis {e;} consisting of eigenvectors of Ry (&y) such that

Rr(éo0)x = Zﬂi (x, e;) e,

i=1

for every x € H. Now note that if u is a non-zero eigenvalue of Ry (&p) and v is the corre-

sponding eigenvector, then
-1 1 1
Rr(éo)v=(T—-& ) v=pu = (T-&I)y= ;v = Tv=|&+ 'L—l V.

We see that the eigenspaces are exactly the same for T and Ry (&), with the eigenvalues of
T being A; = &g + ﬂi’ Hence,

Tx = Z/h (x, e;)e;.
i=1

Finally, we check that A; are real. Since T = T*, 1 = A for every eigenvalue A of 7. Hence 1 is

real. u
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